freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

雙樣本置信區(qū)間和假設檢驗1(參考版)

2025-03-07 09:22本頁面
  

【正文】 2023年 3月 24日星期五 9時 21分 28秒 09:21:2824 March 2023 ? 1一個人即使已登上頂峰,也仍要自強不息。 2023年 3月 24日星期五 上午 9時 21分 28秒 09:21: ? 1最具挑戰(zhàn)性的挑戰(zhàn)莫過于提升自我。勝人者有力,自勝者強。 :21:2809:21Mar2324Mar23 ? 1越是無能的人,越喜歡挑剔別人的錯兒。 , March 24, 2023 ? 閱讀一切好書如同和過去最杰出的人談話。 2023年 3月 24日星期五 9時 21分 28秒 09:21:2824 March 2023 ? 1空山新雨后,天氣晚來秋。 。 :21:2809:21:28March 24, 2023 ? 1意志堅強的人能把世界放在手中像泥塊一樣任意揉捏。 :21:2809:21Mar2324Mar23 ? 1世間成事,不求其絕對圓滿,留一份不足,可得無限完美。 , March 24, 2023 ? 很多事情努力了未必有結(jié)果,但是不努力卻什么改變也沒有。 2023年 3月 24日星期五 9時 21分 28秒 09:21:2824 March 2023 ? 1做前,能夠環(huán)視四周;做時,你只能或者最好沿著以腳為起點的射線向前。 。 :21:2809:21:28March 24, 2023 ? 1他鄉(xiāng)生白發(fā),舊國見青山。 :21:2809:21Mar2324Mar23 ? 1故人江海別,幾度隔山川。 , March 24, 2023 ? 雨中黃葉樹,燈下白頭人。 % df = 4 抽樣平均值的分布 UCL X % 95% LCL 95%置信區(qū)間 風險 風險 t = t = 備注: T表格列出了曲線的一半數(shù)據(jù),因此使用%的表格數(shù)值。 5% df = 4 抽樣平均值的分布 t = UCL 拒絕 Ho 接受 Ho X 風險 95% 95% 置信區(qū)間 Copyright 1995 Six Sigma Academy Inc.. ?? UCL = X + t ?? ??n UCL = X + ??5 雙樣本 CI和假設檢驗 GE Appliances Copyright 1999 修訂版 10 1999年 1月 11日 T分布的雙側(cè)使用 實際的總體平均值包含在給定的置信區(qū)間內(nèi)這一結(jié)論的可信度為 95%。 雙樣本 CI和假設檢驗 GE Appliances Copyright 1999 修訂版 10 1999年 1月 11日 T分布的單側(cè)使用 實際的總體均值小于 UCL這一結(jié)論具有 95%的可信度。 10. 檢驗統(tǒng)計值 標準化數(shù)值 (z、 t、 F等 ),代表 Ho 的可行性,它以已知的方式分布,因此可以確定這種觀察值出現(xiàn)的機率。 9. 功效 統(tǒng)計檢驗能力,以檢查出差異,或正確地拒絕 Ho 的機率。 7. β風險 二類錯誤出現(xiàn)的風險或機率,或者是說,忽略了問題的有效處理或解決方案。 5. 顯著水平 同 α風險。這個機率總是大于零,通常為5%。 3. 一類錯誤 當 Ho 實際上為真時而被拒絕所產(chǎn)生的錯誤,或是接受存在差異、但事實上卻沒有差異時所犯的錯誤。 2. 備 擇假設 (Ha) 存在變化或差異的命題。 雙樣本 CI和假設檢驗 GE Appliances Copyright 1999 修訂版 10 1999年 1月 11日 附錄 雙樣本 CI和假設檢驗 GE Appliances Copyright 1999 修訂版 10 1999年 1月 11日 假設檢驗術語 1. 零假設 (Ho) 不存在變化或差異的命題。 如果所觀察到的顯著性水平 (“ p”)小于可接受的風險 (“ ?” ) ,則 接受 Ha(拒絕 Ho )。 在運行某些例行程序之間,您需要對數(shù)據(jù)進行“退?!保? Manip Stack/Unstack Unstack 在“ 不可用性”中對數(shù)據(jù)進行退棧 存儲在數(shù)據(jù)欄 c14c16中 使用數(shù)據(jù)欄 2中的下標 3個呼叫中心 1. 中心 A (24樣本 ) 2. 中心 B (24樣本 ) 3. 中心 C (12樣本 ) 雙樣本 CI和假設檢驗 GE Appliances Copyright 1999 修訂版 10 1999年 1月 11日 關鍵概念 : 第 4部分 雙樣本置信區(qū)間和假設檢驗 ? 方差 F檢驗是比較 2個方差的假設檢驗 在 Minitab中,方差檢驗稱為“ 方差齊性” Bartlett檢驗法比較 正態(tài) 數(shù)據(jù)的方差 Levene檢驗法 比較 非正態(tài) 數(shù)據(jù)的方差 ? 平均值 t檢驗用于比較 2個數(shù)據(jù)組的平均值 成對 t檢驗比較 數(shù)據(jù) 成對 時兩個總體的平均值差異 ? 置信區(qū)間 總體參數(shù)的取值范圍 (與數(shù)據(jù)一致的值 ) 雙樣本 CI和假設檢驗 GE Appliances Copyright 1999 修訂版 10 1999年 1月 11日 關鍵概念 : 第 4部分 雙樣本置信區(qū)間和假設檢驗 ? 統(tǒng)計風險 ?? 錯 誤 : 將實際上相同的東西誤認為存在差異 (在裝配線上拒絕好的部件 ) ? 風險 : 產(chǎn)生 ?錯誤的風險 ? 根據(jù)慣例, ?風險為 5% (或 ? = ) P值 : 所觀察到的顯著性水平。 首先將數(shù)據(jù)繪制成圖形。這導致應答率很低,造成客戶不滿意。 無法拒絕 Ho 必須使用兩種測量方式 的差值來進 單樣本 t檢驗 我們不能說兩個卡鉗測量結(jié)果的平均值不同 StatBasic Statistics1Sample t 置信區(qū)間 Variable N Mean StDev SE Mean % CI diff 12 (, ) 雙樣本 CI和假設檢驗 GE Appliances Copyright 1999 修訂版 10 1999年 1月 11日 問題 方法 平均值的取值范圍是什么? 單樣本置信區(qū)間 平均值是否與假設值不同? 單樣本假設檢驗 2個平均值之間差異的取值范圍 兩個平均值之間差異的置是什么? 信區(qū)間 兩個總體的平均值是否相同? 雙樣本假設檢驗 對于成對 數(shù)據(jù), 兩個樣本的平均值 成對 t檢驗,以及差異的 是否相同 置信區(qū)間。有時卡鉗 1的測量值更高;有時卡鉗 2的測量值更高。 雙樣本 CI和假設檢驗 GE Appliances Copyright 1999 修訂版 10 1999年 1月 11日 首先將數(shù)據(jù)繪制成圖形 差異直方圖 (c9) 一些差異是正數(shù) (卡鉗 1更高 ),而一些差異是負數(shù) (卡鉗 2更高 )。 在此例中,對同一部件進行了兩次測量。 您希望知道什么 ? 卡鉗的測量結(jié)果是否相同。 檢查員收集了以下數(shù)據(jù)來回答這一問題: “ 兩個卡鉗是否提供同樣的測量結(jié)果? ” 清除 Minitab (不要保存 !) Window Close all graphs 點擊“ Data” 窗口中的任意位置,然后點擊右上角的“ X” 。 雙樣本 CI和假設檢驗 GE Appliances Copyright 1999 修訂版 10 1999年 1月 11日 成對 t檢驗 問題 : 一位操作人員用兩種卡鉗來進行質(zhì)量檢查。 共有 (8 * 7) / 2 = 28種可能的假設檢驗,其中部分差異會由于偶然因素而具有統(tǒng)計顯著性。圖中所觀察到的平均值差異不是偶然出現(xiàn)。圖中顯示的明顯差異可能是偶然出現(xiàn)。 ? 實際重要性 – 差異重要得足以使您采取行動。 權數(shù)為自由度 ni1。 雙樣本 CI和假設檢驗 GE Appliances Copyright 1999 修訂版 10 1999年 1月 11日 拒絕范圍 ??無法拒絕 HO 表格值 (臨界值 ) 表格值 (臨界值 ) 表格值 (臨界值 ) 表格值 (臨界值 ) 拒絕范圍 ??無法拒絕 HO 拒絕范圍 拒絕范圍 ??/ 2 ??/ 2 無法拒絕 HO 雙側(cè)檢驗 單側(cè)右檢驗 單側(cè)左檢驗 注意:備擇假設 (Ha)決定拒絕范圍 ) 單側(cè)和雙側(cè)檢驗 Ha: = (不等于 ) Ha: (大于 ) Ha: (小于 ) 雙樣本 CI和假設檢驗 GE Appliances Copyright 1999 修訂版 10 1999年 1月 11日 假設檢驗 雙樣本 t, 手工方式 . .
點擊復制文檔內(nèi)容
教學課件相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1