【摘要】......27.(本題8分)銳角為45o的直角三角形的兩直角邊長也相等,這樣的三角形稱為等腰直角三角形.我們常用的三角板中有一塊就是這樣的三角形,也可稱它為等腰直角三角板.把兩塊全等的等腰直角三角板按如圖1放置,其中邊BC、
2024-08-14 00:53
【摘要】第一篇:初一全等三角形證明 全等三角形1.三角形全等的判定一(SSS) 1.如圖,AB=AD,CB=CD.△ABC與△ADC全等嗎?為什么? 2.如圖,C是AB的中點,AD=CE,CD=BE. ...
2024-10-25 06:55
【摘要】精品資源第19課三角形與全等三角形知識點:三角形,三角形的角平分線,中線,高線,三角形三邊間的不等關系,三角形的內(nèi)角和,三角形的分類,全等形,全等三角形及其性質(zhì),三角形全等判定大綱要求1.了解全等形,全等三角形的概念和性質(zhì),逆命題和逆定理的概念,理解三角形,三角形的頂點,邊,內(nèi)角,外角,角平分線,中線和高線,線段中垂線等概念。2.理解三角形的任意兩邊之和大于第
2025-04-19 12:49
【摘要】三角形、全等三角形、軸對稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂
2025-07-27 01:22
【摘要】三角形全等的判定第1課時全等三角形與全等三角形的判定條件1.的兩個三角形叫做全等三角形,全等三角形的對應邊____,對應角____.2.兩個三角形只有一組或兩組對應相等的元素,這兩個三角形全等;兩個三角形有三組對應相等的元素,這兩個三角形
2024-11-13 04:27
【摘要】第一篇:初一全等三角形證明題 初二下期三角形全等證明題練習 一、填空題 ,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=DE,則∠ACE= C 第1題 ① ② ③ BC (...
2024-10-25 05:59
【摘要】山亭育才中學翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2024-11-13 22:05
【摘要】三角形全等的條件⑵先任意畫出一個△ABC,再畫一個△A/B/C/,使A/B/=AB,∠A/=∠A,A/C/=AC。把畫好的△A/B/C/剪下,放到△ABC上,它們?nèi)葐??探?已知:任意△ABC,畫一個△A/B/C/,使A/B/=AB,∠A/=∠A,A
2024-11-10 13:41
【摘要】數(shù)學·八年級·上冊第十三章全等三角形湛江第一中學金沙灣學校林創(chuàng)三角形全等的判定問題:如何才能確定兩個三角形全等呢?提示:可以從以下幾個方面去考慮1、定義2、角3、邊4、邊和角
2024-11-10 18:15
【摘要】第一篇:全等三角形 復習提問通過前兩個問題復習鞏固上一節(jié)所講的知識,通過問題3引導學生認識到三角形全等是證明角相等、線段相等的重要方法,然后設疑,如何證明兩個三角形全等?從而引出課題。 活動二:講...
2024-10-21 21:09
【摘要】創(chuàng)設情節(jié),提出問題下列各組圖形的形狀與大小有什么特點?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合兩個三角形叫做全等三角形小試身手下列說法是否正確,并簡要說明理由:(1)邊長相等的正方形都是全等圖形;(2)同一面中華人民共和國國旗上,
2025-07-21 09:49
【摘要】全等三角形下列各組圖形的形狀與大小有什么特點?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合的兩個三角形叫做全等三角形小試身手判斷下列說法是否正確,并說明理由:(1)邊長相等的正方形都是全等圖形;(2)同一面中華人民共和國國旗上,4個小五角星
2024-08-12 17:35
【摘要】.,....全等三角形是初中階段數(shù)學學習的重點,也是難點,主要有以下幾種類型一.A字型AEDCB,點D在AB上,點E在AC上,AB=AC,∠B=∠C,求證:AD=AE,證明:在△ABE與△ACD中
2025-05-19 04:35
【摘要】《全等三角形(第一課時)》說課稿1、教材簡介:義務教育課程標準實驗教科書魯教版五四學制初中數(shù)學七年級下冊第十章第一節(jié)《全等三角形》第一課時。2、教學目標:1、課程標準的要求:本節(jié)課是關于全等三角形的證明的相關知識,需要從全等三角形的三個基本事實出發(fā),利用它們的結論進行一些相關的幾何結論。通過本節(jié)課的學習,要使學生能夠掌握證明的基本步驟和書寫格式,能靈活地運用三個
2025-04-19 23:10
【摘要】全等三角形1已知:如圖,四邊形ABCD中,AC平分DBAD,CE^AB于E,且DB+DD=180°,求證:AE=AD+BE2如圖17所示,在∠AOB的兩邊上截取AO=BO,OC=OD,連接AD、BC交于點P,連接OP,則下列結論正確的是()①△APC
2025-03-27 07:41