【摘要】排列組合的綜合應(yīng)用例1將4個不同的小球放入4個不同的盒子里,求在下列條件下各有多少種不同的放法.(1)恰有一個盒子里放2個球;(2)恰有兩個盒子是空盒.()23441144NCA==3222444412842NCACA=+=()典例講評例
2024-11-13 08:09
【摘要】引入:前面我們已經(jīng)學(xué)習(xí)和掌握了排列組合問題的求解方法,下面我們要在復(fù)習(xí)、鞏固已掌握的方法的基礎(chǔ)上,學(xué)習(xí)和討論排列、組合的綜合問題。和應(yīng)用問題。問題:解決排列組合問題一般有哪些方法?應(yīng)注意什么問題?解排列組合問題時,當(dāng)問題分成互斥各類時,根據(jù)加法原理,可用分類法;當(dāng)問題考慮先后次序時,根據(jù)乘法原理,可用位置
2024-11-13 01:54
【摘要】引入:前面我們已經(jīng)學(xué)習(xí)和掌握了排列組合問題的求解方法,下面我們要在復(fù)習(xí)、鞏固已掌握的方法的基礎(chǔ)上,學(xué)習(xí)和討論排列、組合的綜合問題。和應(yīng)用問題。問題:解決排列組合問題一般有哪些方法?應(yīng)注意什么問題?解排列組合問題時,當(dāng)問題分成互斥各類時,根據(jù)加法原理,可用分類法;當(dāng)問題考慮先后次序時,根據(jù)乘法原
2025-08-10 14:47
【摘要】排列組合中的分堆問題平均分組問題理論部分:平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要除以A(m,m),即m!,其中m表示組數(shù)。例如把a(bǔ)bcd分成平均兩組abcdacbdadbc有_____多少種分法?C42C22A223cdbdbcadac
【摘要】現(xiàn)有3名男生和4名女生排成一行,問下列情形各有多少種不同的排法(用表達(dá)式,不用計(jì)算數(shù)值)?(1)甲不在中間也不在兩端;(2)3名男生互不相鄰;(3)4名女生不全相鄰;(4)4名女生從左到右按由高到矮順序排(女生身高互不相等);(5)甲站在乙右邊第二個位置;
2024-08-27 02:02
【摘要】例1:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆中,問有多少不同的種法?例2:要排一個有5個獨(dú)唱節(jié)目和3個舞蹈節(jié)目的節(jié)目單,如果舞蹈節(jié)目不排頭,并且任何2個舞蹈節(jié)目不連排,則不同的排法有幾種?小結(jié):當(dāng)排列或組合問題中,若某些元素或某些位置有特殊要求的時候,那么,一般先按排這些特殊元素或位置,然后再
2024-08-27 02:06
【摘要】排列、組合、二項(xiàng)式定理知識結(jié)構(gòu)網(wǎng)絡(luò)圖:排列與組合二項(xiàng)式定理基本原理排列組合排列數(shù)公式組合數(shù)公式組合數(shù)的兩個性質(zhì)二項(xiàng)式定理二項(xiàng)式系數(shù)的性質(zhì)基礎(chǔ)練習(xí)名稱內(nèi)容加法原理乘法原理定義相同點(diǎn)不同點(diǎn)兩個原理的區(qū)別與聯(lián)系
【摘要】數(shù)學(xué)廣角排列組合嘉峪關(guān)市新城中心小學(xué):贠吉芳?一、教學(xué)內(nèi)容?課本第99頁知識?二、教學(xué)目標(biāo)?1、通過觀察、猜測、操作等活動吧,學(xué)會最簡單的排列和組合。?2、經(jīng)歷探索簡單事物的排列和組合規(guī)律的過程。?3、培養(yǎng)血紅色呢過有順序地全面地思考問題的意識。?4、感受數(shù)學(xué)與生活的緊密聯(lián)系,激發(fā)學(xué)生
2025-07-22 17:40
2025-08-08 19:14
【摘要】基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問題基礎(chǔ)知識1:知識結(jié)構(gòu)網(wǎng)絡(luò)圖復(fù)習(xí)名稱內(nèi)容分類原理分步原理定義相同點(diǎn)不同點(diǎn)做一件事或完成一項(xiàng)工作的方法數(shù)直接(分類
2024-11-15 02:53
【摘要】數(shù)學(xué)廣角之排列組合主講田村中心小學(xué)劉勝門票5元可以怎樣付錢?門票5元門票5元門票5元門票5元門票5元有幾種穿法?1234每兩個人進(jìn)行一場比賽,一共要比幾場?買一個拼音本,可以怎樣付錢?
2024-12-17 17:38
【摘要】排列組合綜合問題教學(xué)目標(biāo)通過教學(xué),學(xué)生在進(jìn)一步加深對排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學(xué)會分類討論的思想.教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):排列、組合綜合題的解法.難點(diǎn):正確的分類、分步.教學(xué)用具投影儀.教學(xué)過程設(shè)計(jì)(一)引入師:現(xiàn)在我們大家已經(jīng)學(xué)習(xí)和掌握了一些排列問題和組
2025-03-28 02:37
【摘要】.公式P是指排列,從N個元素取R個進(jìn)行排列。公式C是指組合,從N個元素取R個,不進(jìn)行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-29 05:35
【摘要】排列組合應(yīng)用題數(shù)學(xué)教研組盛建芳復(fù)習(xí)回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2024-08-26 23:43
【摘要】排列組合復(fù)習(xí)二、重點(diǎn)難點(diǎn)三、綜合練習(xí)四、復(fù)習(xí)建議一、知識結(jié)構(gòu)基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問題一、知識結(jié)構(gòu)二、重點(diǎn)難點(diǎn)1.兩個基本原理
2024-11-22 00:34