【正文】
Tielin, S. (2004). Classification of gear faults using cumulants and the radial basis function network. Mechanical Systems and Signal Processing, 18, 381–389.Yesilyurt, I. (2004). The application of the conditional moments analysis to gearbox fault detectiona parative study using the spectrogram and scalogram. NDTamp。 Nandi, A. K. (2004). Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Processing, 84 , 351–365.[34] Wu, J. D., Chiang, P. H., Chang, Y. W., amp。 Hu, H. (2006). Vibrationbased fault diagnosis of pump using fuzzy technique. Measurement, 39, 176–185.[32] Wang, W. J., amp。 Yam, R. (2001). Wavelet analysis and envelope detection for rolling element bearing fault diagnosis – Their effectiveness and flexibilities. Journal of Vibration and Acoustics, 123 , 303–310.[30] Tse, P. W., Yang, W. X., amp。 He, O. (1996). Genetic algorithms and their applications. IEEE Signal Processing Magazine , 22–37.[28] Tse, P. W., Gontarz, S., amp。 AlAraimi, S. A. (2003). Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Engineering Applications of Artificial Intelligence, 16, 657–665.[25] Saravanan, N. et al. (2007). A parative study on classification of features by SVM and PSVM extracted using Morlet wavelet for fault diagnosis of spur bevel gear box. Expert Systems with Applications . doi: [26] Soman, K. I., amp。 Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. InProceedings of the IEEE international conference on neural networks , San Francisco.[22] Samanta, B. (2004). Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mechanical Systems and Signal Processing, 18, 625–644.[23] Samanta, B., amp。 Chu, F. L. (2005). A parison study of improved Hilbert–Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing. Mechanical Systems and Signal Processing, 19, 974–988.[20] Rafiee, J., Arvani, F., Harifi, A., amp。 Chu, F. L. (2004). Application of the wavelet transform in machine condition monitoring and fault diagnostics. Mechanical Systems and Signal Processing, 18, 199–221.[18] Peng, Z. K., Tse, P. W., amp。 Cheung, K. L. (2007). Fuzzygenetic algorithm for automatic fault detection in HVAC systems. Applied Soft Computing, 7 , 554–560.[16] Momoh, J. A., amp。 Hu, Q. (2007). Fault diagnosis of rotating machinery based on multiple ANFIS bination with Systems and Signal Processing,21, 2280–2294.[13] Li, B., Chow, M. Y., Tipsuwan, Y., amp。 Ha, M. K. (2004). Neural network approach for diagnosis of grinding operation by acoustic emission and power signals. Journal of Materials Processing T