freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

基于matlab的語音信號數(shù)字濾波器的的設計和實現(xiàn)論文(參考版)

2025-06-25 01:29本頁面
  

【正文】 [3] 于潤偉. MATLAB基礎及應用【M】. 北京:機械工業(yè)出版社,摘。[2] 陳桂明,張明照,戚紅雨. 應用MATLAB語言處理數(shù)字信號與數(shù)字圖像【M】.北京:科學出版社,摘要:數(shù)字信號與數(shù)字圖像處理技術的掌握與應用,必須具有扎實的理論知識,并且能夠熟練使用一些工具。第二章詳細敘述了MATLAB的信號處理工具箱函數(shù)。附錄B: 主要參考文獻的題錄及摘要[1] 樓順天,李博菡. 基于MATLAB的系統(tǒng)分析與設計——信號處理【M】. 西安:西安電子科技大學出版社,摘要:本書為信號處理部分,全書分為三個章節(jié)。其結果是無窮遠雙零。二階函數(shù)下降速度的兩倍,然而,由于章分母178。這種極點配置的靈活性是一個強大的工具,使第二階段,命令在許多開關電容濾波器的有用成分。二階濾波器提供了變量ω0和Q,這使我們能夠進行極無論我們希望inthe復平面上。在圖3a LCR測試電路,這種情況是不可能的,除非?= 0。較低的值較少的Q敲響的結果,因為阻尼更大。由于極39。此外,您可以立即看到響應是一個低通濾波器。在這種情況下,相應的電路相當于兩個級聯(lián)一階濾波器,如前所述。降低的Q逐漸向?qū)Ψ綐O,增加的Q移動成半圓形的兩極彼此遠離,向jω軸。 變ω0更改原點極點39。虛部將平等和符號相反。真正的部分,因此b/2a,這是ω0/2Q,共同為雙方的根源。這宗案件是不是很有趣,所以我們將只考慮案件其中Q“,這意味著(二178。因此,然后兩個根源是真實的,躺在負實軸。(1 / Q首頁178。術語(二178??紤]圖3a無源LC濾波器,例如。二階低通濾波器二階濾波器秒的分母和兩個復平面極點。以便設計出一套更緊密地過濾器的應用需求,我們必須更高的訂單。也就是說,它們是一階濾波器。從這些功能,我們得到的電路的頻率響應(因此它的波特圖),并且它的瞬態(tài)響應。相反,極接近jω軸原因較長的瞬態(tài)響應。的集成使無限的反應。低通濾波器的瞬態(tài)響應,更穩(wěn)定,因為它極是否定的復雜飛機的真正的一半。 雖然復雜頻率的虛部,jω,幫助說明對交流信號的反應,真正的一部分,σ,有助于描述了電路的瞬態(tài)響應。我們沿著jω切軸的功能,并強調(diào)RC低通濾波器的頻率響應,加入了積極jω沿軸重型線函數(shù)值曲線。在圖2b中的復雜情節(jié),σ= 0,因此擰沿積極jω軸=jω。在交流分析jω其實S的,虛的一部分,正如前面提到的,是一個真正的組成部分及一個虛部jω。瞬態(tài)響應進行分析時使用拉普拉斯變換,我們使用這些元素阻抗SL和1/sC。圍繞這一個零復平面。為積分器和RC低通濾波器,頻率響應趨于零的無窮的頻率。在極ω0是顯而易見的。當S = ω0,分母是零和函數(shù)的值是無窮的,這表明在復頻率平面極點。 當S = 0,函數(shù)簡化為ω0/ω0,即統(tǒng)一。簡單的RC低通濾波器稍微復雜一些過濾器是簡單的低通RC型(圖2a)。在任何頻率的傳遞函數(shù)的值變?yōu)闊o限)我們也知道,集成的增益削弱日益頻繁,并在輸出電壓高頻率幾乎為零。無視這一限制,一個積分為零的頻率響應是無限的,這意味著它有一個為零高頻極點。考慮我們所知道的一個積分直觀。具體整合的濾波器,這里描述包括Maxim公司的MAX7400家族較高階開關電容濾波器。用一個簡單的集成商開始,我們首先發(fā)展一種有源濾波器一般直觀的方法。導言易于使用,使集成開關電容濾波器,對許多應用來說極具吸引力。它首先解決了基本類型:第一和第二階濾波器,高通和低通濾波器,陷波和全通濾波器,以及高階濾波器。 negativereal part is smaller, an input step function will cause ringing at the filter output. Lower values of Q result in less ringing, because the damping is greater. If Q bees infinite, the poles reach the jω axis, causing an infinite frequency response (instability and continuous oscillation) at s = ω0. In the LCR circuit in Figure 3a, this condition would not be possible unless R = 0. For filters that contain amplifiers, however, the condition is indeed possible and must be considered in the design process. A secondorder filter provides the variables ω0 and Q, which allow us to place poles wherever we want inthe plex plane. These poles must, nonetheless, occur as plexconjugate pairs, in which the real parts are equal and the imaginary parts have opposite signs. This flexibility in pole placement is a powerful tool, making the secondorder stage a useful ponent in many switchedcapacitor filters. As in the firstorder case, the secondorder lowpass transfer function approaches zero as frequency increases to infinity. The secondorder function decreases twice as fast, however, because of the s178。s frequency response and see how it varies with Q. As before, Figure 4a shows the function as a curved surface, depicted in the threedimensional space formed by the plex plane and a vertical magnitude vector. Further, Q = , and you can see immediately that the response is a lowpass filter.There is also an effect on the filter39。 distance from the origin. Decreasing the Q moves the poles toward each other。 4ac) is negative and the roots are plex. The real part is therefore b/2a, which is ω0/2Q, and mon to both roots. The roots39。 4). So if Q is less than then both roots are real and lie on the negativereal axis. The circuit39。 4ac) equals ω0178。 in the denominator and two poles in the plex plane. You can obtain such a response by using inductance and capacitance in a passive circuit or by creating an active circuit of resistors, capacitors, and amplifiers. Consider the passive LC filter in Figure 3a . In this case, a = 1, b = ω0/Q, and c = ω0178。 the integrator makes an infinite response. For the lowpass filter, pole positions further down the σ axis mean a higher ω0, a shorter time constant, and therefore a quicker transient response. Conversely, a pole closer to the jω axis causes a longer transient response. So far, we have related the mathematical transfer functions of some simple circuits to their associated poles and zeroes in the plexfrequency plane. From these functions, we have derived the circuit39。s response pared to that of the integrator. The lowpass filter39。s imaginary part, jω, helps describe a response to AC signals, the real part, σ, helps describe a circuit39。s value along this axis is the frequency response of the filter. We have sliced the function along the jω axis and emphasized the RC lowpass filter39。s response to actual frequencies? When analyzing the response of a circuit to AC signals, we use the expression jωL for the impedance of an inductor and 1/jωC for that of a capacitor. When analyzing transient response using Laplace transforms, we use sL and 1/sC for the impedance of these elements. The similarity is apparent immediately. The jω in AC analysis is in fact the imaginary part of s, which, as mentioned earlier, is posed of a real part s and an imaginary part jω. If we replace s by jω in any of the above equations, we have the circuit39。s value is infinite, indicating a pole in the plex frequency plane. The magnitude of the transfer function is plotted against s in Figure 2b, where the real ponent of s, σ, is toward us and the positive imaginary part, jω, is toward the right. The pole at ω 0 is evident. Amplitude is shown logarithmically to emphasize the function39。s value bees infinite.) We also know that the integrator39。謝謝你們!以后的生活中,我也一定會更加努力的!謝謝! 作 者: 日 期: 2010 年 6 月 16 日參考文獻[1] 劉敏,魏玲. Matlab 通信仿真與應用【M】. 北京: 國防工業(yè)出版社, 2001 .[2] 樓順天, 劉小東, 的系統(tǒng)分析與設計【J】.信號處理. 西安: 西安電子科技大學, 2005.[3] 陳懷深. MATLAB及其在理工課程中的應用指南【M】.西安:西安交通大學出版社,1998.[4] 程佩青. 數(shù)字信號處理教程【M】.北京: 清華大學出版社,2002.[5] 【J】.吉林水利學報,2002,5(5):3538[6] Fisk, C. Some developments in equilibrium traffic assignment【J】. Transportation Research B, 1980,14(3): 243255.[7] 徐明遠,【M】.西安:西安電子科技大學出版社,2005[8] Dial, . A probabilistic multipath assignment model whichobviates path enumeration 【J】. Transportation Research,
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1