【摘要】第五講中值定理的證明技巧一、考試要求1、理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大值、最小值定理,有界性定理,介值定理),并會應用這些性質(zhì)。2、理解并會用羅爾定理、拉格朗日中值定理、泰勒定理,了解并會用柯西中值定理。掌握這四個定理的簡單應用(經(jīng)濟)。3、了解定積分中值定理。二、內(nèi)容提要1、介值定理(根的存在性定理)(1)介值定理在閉區(qū)間上連續(xù)
2025-06-22 00:08
【摘要】柯西中值定理的證明及應用馬玉蓮(西北師范大學數(shù)學與信息科學學院,甘肅,蘭州,730070)摘要:本文多角度介紹了柯西中值定理的證明方法和應用,其中證明方法有:構(gòu)造輔助函數(shù)利用羅爾定理證明,利用反函數(shù)及拉格朗日中值定理證明,利用閉區(qū)間套定理證明,利用達布定理證明,利用坐標變換證明.其應用方面有:求極限、證明不等式、證明等式、證明單調(diào)性、證明函數(shù)有界、證明一致連續(xù)
2025-06-26 14:37
【摘要】畢業(yè)論文(2010屆)題目微分中值定理的證明探討及推廣學院數(shù)學計算機學院專業(yè)數(shù)學教育
2024-09-02 22:48
【摘要】微分中值定理的證明、推廣以及應用【摘要】微分中值定理在高等數(shù)學中占有非常重要的地位,微分中值定理主要包括:拉格朗日中值定理,羅爾中值定理,以及柯西中值定理。本文主要對羅爾中值定理的條件做一些適當?shù)母淖儯艿贸鋈缦乱恍┙Y(jié)論,
2025-06-27 23:00
【摘要】本科生畢業(yè)論文(設(shè)計)題 目微分中值定理的證明與應用分析姓 名馬華龍學號2009145154院 系電氣與自
2025-07-02 13:13
【摘要】微分中值定理的證明題1.若在上連續(xù),在上可導,,證明:,使得:。證:構(gòu)造函數(shù),則在上連續(xù),在內(nèi)可導,且,由羅爾中值定理知:,使 即:,而,故。2.設(shè),證明:,使得。 證:將上等式變形得:作輔助函數(shù),則在上連續(xù),在內(nèi)可導, 由拉格朗日定理得:,即,即:。
2025-03-28 01:54
【摘要】談談拉格朗日中值定理的證明引言眾所周至拉格朗日中值定理是幾個中值定理中最重要的一個,是微分學應用的橋梁,在高等數(shù)學的一些理論推導中起著很重要的作用.研究拉格朗日中值定理的證明方法,力求正確地理解和掌握它,是十分必要的.拉格朗日中值定理證明的關(guān)鍵在于引入適當?shù)妮o助函數(shù).實際上,能用來證明拉格朗日中值定理的輔助函數(shù)有無數(shù)個,因此如果以引入輔助
2025-03-29 03:58
【摘要】目 錄第一部分:中值定理結(jié)論總結(jié)........................................................................................................? 11、介值定理.........................................................
2025-04-07 02:44
【摘要】學年論文題目:微分中值定理的證明及應用學院:數(shù)學與信息科學學院專業(yè):數(shù)學與應用數(shù)學學生姓名:***學號:*****
2025-01-19 14:17
【摘要】目錄上頁下頁返回結(jié)束二、導數(shù)應用習題課一、微分中值定理及其應用中值定理及導數(shù)的應用第三章目錄上頁下頁返回結(jié)束造技巧:注:常見的一些函數(shù)構(gòu)????)()(),(1ffba?????使)證(xxfxF)()(??0)()(),(2????
2025-07-29 00:45
【摘要】分類號編號本科生畢業(yè)論文(設(shè)計)題目拉格朗日中值定理證明中的輔助函數(shù)的構(gòu)造及應用作者姓名常正軍專業(yè)數(shù)學與應用數(shù)學學號291010102研究類型
2025-06-27 22:59
【摘要】JIUJIANGUNIVERSITY畢業(yè)論文題目微分中值定理證明不等式方法研究英文題目Usingdifferentialmeanvaluetheoremprovinginequalitymethodstudying院系
2025-06-09 23:01
【摘要】用面積法證明Pascal定理的方法與技巧[帕斯卡定理]如圖,用一條閉折線依次連接圓上的六個點,其中,則三點共線。[證]首先,連接,設(shè);圖(1)圖(2)順次連接圓上的個相鄰點,得到圓的內(nèi)接凸六邊形;連接與圓周上的六點,設(shè),則,從而。,可知,,即得,即。由于都是線段上的點,可知同向分線段的比相等,故為同一點(重合),從而證明了
2025-06-26 04:20
【摘要】1各專業(yè)完整優(yōu)秀畢業(yè)論文設(shè)計圖紙本科畢業(yè)論文設(shè)計題目:拉格朗日中值定理的應用學生姓名:學號:2020
2024-09-05 21:08
【摘要】拉格朗日中值定理引言眾所周至拉格朗日中值定理是幾個中值定理中最重要的一個,是微分學應用的橋梁,在高等數(shù)學的一些理論推導中起著很重要的作用.研究拉格朗日中值定理的證明方法,力求正確地理解和掌握它,是十分必要的.拉格朗日中值定理證明的關(guān)鍵在于引入適當?shù)妮o助函數(shù).實際上,能用來證明拉格朗日中值定理的輔助函數(shù)有無數(shù)個,因此如果以引入輔助函數(shù)的個數(shù)來計算,
2025-07-01 19:49