【摘要】平面幾何定理公理總結一、線與角1.兩點之間,線段最短。線段的長叫兩點間的距離。直線外一點到直線,垂線段最短,垂線段的長叫該點到直線的距離。一組平行線中,一條直線上一點到另一條直線的距離,叫兩條平行線間的距離。2.經(jīng)過兩點有且只有一條直線,即兩點確定一條直線。不在同一直線上的三點確定一個角。3.兩直線相交,對頂角相等。4.同角(或等角)的余角相等;同角(或
2025-06-20 01:36
【摘要】(高中)平面幾何基礎知識(基本定理、基本性質)1.勾股定理(畢達哥拉斯定理)(廣義勾股定理)(1)銳角對邊的平方,等于其他兩邊之平方和,減去這兩邊中的一邊和另一邊在這邊上的射影乘積的兩倍. (2)鈍角對邊的平方等于其他兩邊的平方和,加上這兩邊中的一邊與另一邊在這邊上的射影乘積的兩倍.2.射影定理(歐幾里得定理)3.中線定理(巴布斯定理)設△ABC的邊BC的中點為P,則有;中
2025-06-19 21:17
【摘要】第一篇:高中平面幾何定理 (高中)平面幾何基礎知識(基本定理、基本性質) 1.勾股定理(畢達哥拉斯定理)(廣義勾股定理)(1)銳角對邊的平方,等于其他兩邊之平方和,減去 這兩邊中的一邊和另一邊在...
2024-11-09 12:32
【摘要】......高一數(shù)學競賽班二試講義第1講平面幾何中的26個定理班級姓名一、知識點金1.梅涅勞斯定理:若直線不經(jīng)過的頂點,并且與的三邊或它們的延長線分別
2025-06-22 22:03
【摘要】初中數(shù)學平面幾何知識定理1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩
2025-06-10 16:31
【摘要】......平面幾何的17個著名定理1.若不給自己設限,則人生中就沒有限制你發(fā)揮的藩籬。2.若不是心寬似海,哪有人生風平浪靜。在紛雜的塵世里,為自己留下一片純靜的心靈空間,
2025-06-22 23:35
【摘要】平面幾何四個重要定理四個重要定理:梅涅勞斯(Menelaus)定理(梅氏線)△ABC的三邊BC、CA、AB或其延長線上有點P、Q、R,則P、Q、R共線的充要條件是。塞瓦(Ceva)定理(塞瓦點)△ABC的三邊BC、CA、AB上有點P、Q、R,則AP、BQ、CR共點的充要條件是。托勒密(Ptolemy)定理四邊形的兩對邊乘積之和等于其對角線乘積的
2025-06-22 22:55
【摘要】梅涅勞斯定理托勒密定理引入塞瓦定理課外思考平面幾何──平面幾何的幾個重要定理平面幾何是培養(yǎng)嚴密推理能力的很好數(shù)學分支,且因其證法多種多樣:除了幾何證法外,還有三角函數(shù)法、解析法、復數(shù)法、向量法等許多證法,這方面的問題受到各種競賽的青睞,現(xiàn)在每一屆的聯(lián)賽的第二試都有一道幾何題.平面幾何的知識競賽要求:三角形的邊
2025-07-28 15:22
【摘要】歐氏幾何的公理體系和我國平面幾何課本的歷史演變張英伯引子最近一個時期,許多數(shù)學家和大學數(shù)學教師對中學的課程改革非常關心。正如大家經(jīng)常議論的,目前的中等教育,有很多不盡如人意的地方,比如愈演愈烈的高考競爭引發(fā)的應試教育,使我們的中學學生和中學老師不堪重負。這些現(xiàn)象大多屬于社會問題,單純靠學術和教學是解決
2025-02-19 22:49
【摘要】平面幾何中的幾個重要定理一.塞瓦定理塞瓦(G。Ceva1647—1743),意大利著名數(shù)學家。塞瓦定理設為三邊所在直線外一點,連接分別和的邊或三邊的延長線交于(如圖1),則與塞瓦定理同樣重要的還有下面的定理。塞瓦定理逆定理設為的邊或三邊的延長線上的三點(都在三邊上或只有其中之一在邊上),如果有
2024-09-02 20:55
【摘要】競賽專題講座-平面幾何四個重要定理重慶市育才中學瞿明強 四個重要定理:梅涅勞斯(Menelaus)定理(梅氏線)△ABC的三邊BC、CA、AB或其延長線上有點P、Q、R,則P、Q、R共線的充要條件是四個重要定理:。塞瓦(Ceva)定理(塞瓦點)△ABC的三邊BC、CA、AB上有點P、Q、R,則AP、BQ、CR共點的充要條件是。托勒密
2025-06-23 00:20
2025-08-08 19:18
【摘要】平面幾何中幾個重要定理及其證明一、塞瓦定理1.塞瓦定理及其證明定理:在ABC內(nèi)一點P,該點與ABC的三個頂點相連所在的三條直線分別交ABC三邊AB、BC、CA于點D、E、F,且D、E、F三點均不是ABC的頂點,則有.證明:運用面積比可得.根據(jù)等比定理有,所以.同理可得,.三式相乘得.注:在運用三角形的面積比時,要把握住兩個
2025-06-22 21:56
【摘要】........高中平面幾何定理匯總及證明1.共邊比例定理有公共邊AB的兩個三角形的頂點分別是P、Q,AB與PQ的連線交于點M,則有以下比例式成立:△PAB的面積:△QAB的面積=PM:QM.?證明:分如下四種情況,分別作三角形高,由
2025-06-28 04:50