freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

抽屜原理練習(xí)題(參考版)

2025-03-28 02:32本頁(yè)面
  

【正文】 。從六人集會(huì)問(wèn)題的證明中,我們又一次看到了抽屜原理的應(yīng)用?! ×思瘯?huì)問(wèn)題是組合數(shù)學(xué)中著名的拉姆塞定理的一個(gè)最簡(jiǎn)單的特例,這個(gè)簡(jiǎn)單問(wèn)題的證明思想可用來(lái)得出另外一些深入的結(jié)論。不論哪種情形發(fā)生,都符合問(wèn)題的結(jié)論。根據(jù)抽屜原理可知其中至少有3條連線同色,不妨設(shè)AB,AC,AD同為紅色。如果兩人以前彼此認(rèn)識(shí),那么就在代表他們的兩點(diǎn)間連成一條紅線;否則連一條藍(lán)線?! ∵@個(gè)問(wèn)題可以用如下方法簡(jiǎn)單明了地證出:  “證明在任意6個(gè)人的集會(huì)上,或者有3個(gè)人以前彼此相識(shí),或者有三個(gè)人以前彼此不相識(shí)?! 〕閷显淼膬?nèi)容簡(jiǎn)明樸素,易于接受,它在數(shù)學(xué)問(wèn)題中有重要的作用?!  鞍褵o(wú)限多個(gè)東西任意分放進(jìn)n個(gè)空抽屜(n是自然數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了無(wú)限多個(gè)東西?! ±蒙鲜鲈砣菀鬃C明:“任意7個(gè)整數(shù)中,至少有3個(gè)數(shù)的兩兩之差是3的倍數(shù)?!  鞍讯嘤趉n個(gè)東西任意分放進(jìn)n個(gè)空抽屜(k是正整數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了至少k+1個(gè)東西。任取6只手套,它們的編號(hào)至多有5種,因此其中至少有兩只的號(hào)碼相同。這相當(dāng)于把367個(gè)東西放入 366個(gè)抽屜,至少有2個(gè)東西在同一抽屜里?!彼膬?nèi)容可以用形象的語(yǔ)言表述為:  大家都會(huì)認(rèn)為上面所述結(jié)論是正確的?!薄薄?某一類(lèi)至少包含三個(gè)數(shù);2176?! ∷?,假設(shè)不成立,故必有一個(gè)i,在第i個(gè)集合中元素個(gè)數(shù)ai≥qi  形式五:證明:(用反證法)將無(wú)窮多個(gè)元素分為有限個(gè)集合,假設(shè)這有限個(gè)集合中的元素的個(gè)數(shù)都是有限個(gè),則有限個(gè)有限數(shù)相加,所得的數(shù)必是有限數(shù),這就與題設(shè)產(chǎn)生矛盾,所以,假設(shè)不成立,故必有一個(gè)集合含有無(wú)窮多個(gè)元素。所以,必有一個(gè)集合中元素個(gè)數(shù)大于或等于[n/k]  形式四:證明:設(shè)把q1+q2+…+qn-n+1個(gè)元素分為n個(gè)集合A1,A2,…,An,用a1,a2,…,an表示這n個(gè)集合里相應(yīng)的元素個(gè)數(shù),需要證明至少存在某個(gè)i,使得ai大于或等于qi。所以,至少有存在一個(gè)ai≥m+1  高斯函數(shù):對(duì)任意的實(shí)數(shù)x,[x]表示“不大于x的最大整數(shù)”.  例如:[]=3,[]=2,[-]=-3,[7]=7,……一般地,我們有:[x]≤x<[x]+1  形式三:證明:設(shè)把n個(gè)元素分為k個(gè)集合A1,A2,…,Ak,用a1,a2,…,ak表示這k個(gè)集合里相應(yīng)的元素個(gè)數(shù),需要證明至少存在某個(gè)ai大于或等于[n/k]?! ⌒问蕉涸O(shè)把n?m+1個(gè)元素分為n個(gè)集合A1,A2,…,An,用a1,a2,…,an表示這n個(gè)集合里相應(yīng)的元素個(gè)數(shù),需要證明至少存在某個(gè)ai大于或等于m+1?! ⌒问揭唬鹤C明:設(shè)把n+1個(gè)元素分為n個(gè)集合A1,A2,…,An,用a1,a2,…,an表示這n個(gè)集合里相應(yīng)的元素個(gè)數(shù),需要證明至少存在某個(gè)ai大于或等于2(用反證法)假設(shè)結(jié)論不成立,即對(duì)每一個(gè)ai都有ai<2,則因?yàn)閍i是整數(shù),應(yīng)有ai≤1,于是有:  a1+a2+…+an≤1+1+…+1=n<n+1這與題設(shè)矛盾。它是組合數(shù)學(xué)中一個(gè)重要的原理。  抽屜原理  把八個(gè)蘋(píng)果任意地放進(jìn)七個(gè)抽屜里,不論怎樣放,至少有一個(gè)抽屜放有兩個(gè)或兩個(gè)以上的蘋(píng)果?! 》治雠c解答共有n位校友,每個(gè)人握手的次數(shù)最少是0次,即這個(gè)人與其他校友都沒(méi)有握過(guò)手;最多有n1次,如果有一個(gè)校友握手的次數(shù)是0次,那么握手次數(shù)最多的不能多于n2次;如果有一個(gè)校友握手的次數(shù)是n1次,、…、n2,還是后一種狀態(tài)…、n1,到會(huì)的n個(gè)校友每人按照其握手的次數(shù)歸入相應(yīng)的“抽屜”,根據(jù)抽屜原理,至少有兩個(gè)人屬于同一抽屜,則這兩個(gè)人握手的次數(shù)一樣多。  從這10個(gè)數(shù)組的20個(gè)數(shù)中任取11個(gè)數(shù),根據(jù)抽屜原理,所以這兩個(gè)數(shù)中,其中一個(gè)數(shù)一定是另一個(gè)數(shù)的倍數(shù)。  例3:從1到20這20個(gè)數(shù)中,任取11個(gè)數(shù),必有兩個(gè)數(shù),其中一個(gè)數(shù)是另一個(gè)數(shù)的倍數(shù)。  分析與解答在這20個(gè)自然數(shù)中,差是12的有以下8對(duì):{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}?,F(xiàn)從題目中的15個(gè)偶數(shù)中任取9個(gè)數(shù),由抽屜原理(因?yàn)槌閷现挥?個(gè)),這兩個(gè)數(shù)的和是34?! ∪圃斐閷鲜沁\(yùn)用原則的一大關(guān)鍵  例1 從…、30這15個(gè)偶數(shù)中,任取9個(gè)數(shù),證明其中一定有兩個(gè)數(shù)之和是34?! ∪鬋,D,E中有兩人也討論乙問(wèn)題,則結(jié)論也就成立了。否則他們6位只討論乙、丙兩問(wèn)題。設(shè)這6位科學(xué)家為B,C,D,E,F(xiàn),G,討論的是甲問(wèn)題。證明:至少有三個(gè)科學(xué)家通信時(shí)討論的是同一個(gè)問(wèn)題?! ±?′(六人集會(huì)問(wèn)題)證明在任意6個(gè)人的集會(huì)上,或者有3個(gè)人以前彼此相識(shí),或者有三個(gè)人以前彼此不相識(shí)。這三條線段的另一端或許是不同顏色,假設(shè)這三條線段(虛線)中其中一條是紅色的,那么這條紅色的線段和其他兩條紅色的線段便組成了我們所需要的同色三角形,如果這三條線段都是藍(lán)色的,那么這三條線段也組成我們所需要的同色三角形?! 》治雠c解答首先要確定3枚棋子的顏色可以有多少種不同的情況,可以有:3黑,2黑1白,1黑2白,3白共4種配組情況,至少有兩個(gè)小朋友摸出的棋子的顏色在同一個(gè)抽屜里,也就是他們所拿棋子的顏色配組是一樣的。由于這兩個(gè)梯形的高相等,故它們的面積之比等于中位線長(zhǎng)的比,即|MH|:|NH| ?! ±?:對(duì)于任意的五個(gè)自然數(shù),證明其中必有3個(gè)數(shù)的和能被3整除.  證明∵任何數(shù)除以3所得余數(shù)只能是0,1,2,不妨分別構(gòu)造為3個(gè)抽屜:  [0],[1],[2]  ①若這五個(gè)自然數(shù)除以3后所得余數(shù)分別分布在這3個(gè)抽屜中,我們從這三個(gè)抽屜中各取1個(gè),其和必能被3整除.  ②若這5個(gè)余數(shù)分布在其中的兩個(gè)抽屜中,則其中必有一個(gè)抽屜,包含有3個(gè)余數(shù)(抽屜原理),而這三個(gè)余數(shù)之和或?yàn)?,或?yàn)?,或?yàn)?,故所對(duì)應(yīng)的3個(gè)自然數(shù)之和是3的倍數(shù). ?、廴暨@5個(gè)余數(shù)分布在其中的一個(gè)抽屜中,很顯然,必有3個(gè)自然數(shù)之和能被3整除.  例2′:對(duì)于任意的11個(gè)整數(shù),證明其中一定有6個(gè)數(shù),它們的和能被6整除.  證明:設(shè)這11個(gè)整數(shù)為:a1,a2,a3……a11 又6=23 ?、傧瓤紤]被3整除的情形  由例2知,在11個(gè)任意整數(shù)中,必存在:  3|a1+a2+a3,不妨設(shè)a1+a2+a3=b1;  同理,剩下的8個(gè)任意整數(shù)中,由例2,必存在:3 | a4+a5++a5+a6=b2;  同理,其余的5個(gè)任意整數(shù)中,有:3|a7+a8+a9,設(shè):a7+a8+a9=b3 ?、谠倏紤]bbb3被2整除.  依據(jù)抽屜原理,bbb3這三個(gè)整數(shù)中,至少有兩個(gè)是同奇或同偶,這兩個(gè)同奇(或同偶)|b1+b2  則:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6  ∴任意11個(gè)整數(shù),其中必有6個(gè)數(shù)的和是6的倍數(shù).  例3:任意給定7個(gè)不同的自然數(shù),求證其中必有兩個(gè)整數(shù),其和或差是10的倍數(shù).  分析:注意到這些數(shù)隊(duì)以10的余數(shù)即個(gè)位數(shù)字,以0,1,…,9為標(biāo)準(zhǔn)制造10個(gè)抽屜,標(biāo)以[0],[1],…,[9].若有兩數(shù)落入同一抽屜,其差是10的倍數(shù),只是僅有7個(gè)自然數(shù),似不便運(yùn)用抽屜原則,再作調(diào)整:[6],[7],[8],[9]四個(gè)抽屜分別與[4],[3],[2],[1]合并,則可保證至少有一個(gè)抽屜里有兩個(gè)數(shù),它們的和或差是10的倍數(shù). ?。ǘ┟娣e問(wèn)題  例:九條直線中的每一條直線都將正方形分成面積比為2:3的梯形,證明:這九條直線中至少有三條經(jīng)過(guò)同一點(diǎn).  例1 證明:任取8個(gè)自然數(shù),必有兩個(gè)數(shù)的差是7的倍數(shù)。下面我們來(lái)研究有關(guān)的一些問(wèn)題?! ±?:幼兒園買(mǎi)來(lái)了不少白兔、熊貓、長(zhǎng)頸鹿塑料玩具,每個(gè)小朋友任意選擇兩件,那么不管怎樣挑選,在任意七個(gè)小朋友中總有兩個(gè)彼此選的玩具都相同,試說(shuō)明道理.  解:從三種玩具中挑選兩件,搭配方式只能是下面六種:(兔、兔),(兔、熊貓),(兔、長(zhǎng)頸鹿),(熊貓、熊貓),(熊貓、長(zhǎng)頸鹿),(長(zhǎng)頸鹿、長(zhǎng)頸鹿)?!薄  皬臄?shù)1,2,...,10中任取6個(gè)數(shù),其中至少有2個(gè)數(shù)為奇偶性不同?! ∮秩纾何覀儚慕稚想S便找來(lái)13人,就可斷定他們中至少有兩個(gè)人屬相相同.  例1:400人中至少有兩個(gè)人的生日相同.  [證明](反證法):若每個(gè)抽屜都有不少于m個(gè)物體,則總共至少有mn個(gè)物體,與題設(shè)矛盾,故不可能  二.應(yīng)用抽屜原理解題  抽屜原理的內(nèi)容簡(jiǎn)明樸素,易于接受,它在數(shù)學(xué)問(wèn)題中有重要的作用。  [證明](反證法):如果每個(gè)抽屜至多只能放進(jìn)一個(gè)物體,那么物體的總數(shù)至多是n,而不是題設(shè)的n+k(k≥1),這不可能.  原理2 把多于mn個(gè)的物體放到n個(gè)抽屜里,則至少有一個(gè)抽屜里有m+1個(gè)或多于m+1個(gè)的物體。它是組合數(shù)學(xué)中一個(gè)重要的原理?!薄 〕閷显碛袝r(shí)也被稱(chēng)為鴿巢原理(“如果有五個(gè)鴿子籠,養(yǎng)鴿人養(yǎng)了6只鴿子,那么當(dāng)鴿子飛回籠中后,至少有一個(gè)籠子中裝有2只鴿子”)。這一現(xiàn)象就是我們所說(shuō)的抽屜原理?,F(xiàn)在有課外書(shū)125本。{足}{排}{藍(lán)}{足足}{排排}{藍(lán)藍(lán)}{足排}{足藍(lán)}{排藍(lán)}、排球和籃球,某班50名同學(xué)來(lái)倉(cāng)庫(kù)拿球,規(guī)定每個(gè)人至少拿1個(gè)球,至多拿2個(gè)球,問(wèn)至少有幾名同學(xué)所拿的球種類(lèi)是一致的?解題關(guān)鍵:利用抽屜原理2。證明:設(shè)每勝一局得一分,由于沒(méi)有平局,也沒(méi)有全勝,則得分情況只有3……49,只有49種可能 ,以這49種可能得分的情況為49個(gè)抽屜 ,現(xiàn)有50名運(yùn)動(dòng)員得分 則一定有兩名運(yùn)動(dòng)員得分相同 .25.有50名運(yùn)動(dòng)員進(jìn)行某個(gè)項(xiàng)目的單循環(huán)賽,如果沒(méi)有平局,:一定有兩個(gè)運(yùn)動(dòng)員積分相同解:把這條小路分成每段1米長(zhǎng),
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1