freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

[經(jīng)濟(jì)學(xué)]sling抽樣技術(shù)統(tǒng)計(jì)學(xué)專業(yè)課課件(參考版)

2025-02-22 18:30本頁面
  

【正文】 4, is large。 2, the sampling fraction n/N is large。 5, the correlation R is close to 1. 222V ( ) ( , )?( ) 1 x x yUUB S R S Sn B x C o v x yE B BN n x x? ???? ? ? ??????BUxxSThe proof for it is: ()? UUx x xy y B x y B xB B Bx x x x????? ? ? ? ? ?? ? () UUUy B x x xy B xx x x??????? ? ? ? ()? UUy B x x xE B B Exx????? ? ??? ???? ?21 () UUE y B x x xx? ? ? ?????? ?S i n c e : 0UUE y B x y B x? ? ? ? ? ?21 ()U U UUE y y y B x x xx? ? ? ? ? ?????? ? ? ?21 ( ) ( )U U U UUE y y x x y B x x xx? ? ? ? ? ? ?????? ? ? ?222211 1y x x x x yUUnR S S B S B S R S Sx N n x??? ? ? ? ? ?????? ? ? ?21 ( ) ( )U U U UUE y y x x B x B x x xx? ? ? ? ? ? ?????? ? () 1 amp。 2, the sampling fraction n/N is large。 Average yield per acre Per capita ine The ratio of liabilities to assets The ratio of the fish caught to the hours spent fishing ?Sometimes we want to estimate a population total, but the population size N is unknown。 whereas “central limit theorem ” says that the distribution of any sample mean converges to normal distribution if n is sufficiently large, with the same or different distribution. 212 2... 1l i m P ( ) ( ) d x2tynnX X X n y y en????????? ? ? ? ? ? ? ? ?l i m P( ) 1npn? ???? ? ?Bernoulli’s law of large numbers is: Linderberg and levy’s central limit theorem is: ? Sample Size Estimation ?An investigator often measures several variables and has a number of goals for a survey. Anyone designing an SRS must decide what amount of sampling error in the estimates is tolerable and must balance the precision of the estimates with the cost of the survey. ? Follow these steps to estimate the sample size: ? Ask questions as: A: What is expected of the sample? B: How much precision do I need? C: What are the consequences of the sample results? D: How much error is tolerable? ?Find an equation relating the sample size n and our expectations of the sample ?Estimate any unknown quantities and solve for n. ?If the sample size you calculated in last step is much larger than you can afford. Go back and adjust some of the expectations for the survey and try again. ?Specify the tolerable error P ( ) 1Uy y e ?? ? ? ?o r P ( ) 1UUyy ey ?? ? ? ??Find an equation ? Solving for n, we have: In relative precision case, we have 2 1nSezN n???222 022022 1zS nnnzSe NN??????? ?2 2 2 2222 2 2 22 22 2C V ( )C V ( )Uz S z ynz S z ye y eNN????????? Randomization Theory Results for Simple Random Sampling* ? To verify and Define , then we have [] UE y y?2[ ] 1 nSVyNn????????1 i f u n i t i s i n t h e s a m p l0 o t h e r w i s eiieZ?? ??1Niiii S iyyyZnn?????? ? ?P ( 1 ) s e l e c t u n i t i n s a m p l eiZ P i??num be r of sa m pl e s i nc l uding uni t num be r of a l l possi bl e sa m pl e si?11Nn nN Nn???????????????? As a consequence of equation () in order to calculate the variance of ,note that: ? ? ? ?? ?222 1i i in n n nV Z E Z E ZN N N N? ? ? ???? ? ? ? ? ?? ? ? ??? ? ? ? ?? ?1 1 1N N Ni i iiUi i iy y ynE y E Z yn N n N? ? ???? ? ? ?????? ? ?? ? 2ii nE Z E Z N??????y ? ?,i j i j i jC o v Z Z E Z Z E Z E Z? ? ? ? ? ???? ? ? ? ? ?( 1 a n d 1 )i j i jE Z Z P Z Z?? ? ? ???fo r ij?1( 1 | 1 ) ( 1 ) *1j i innP Z Z P ZNN?? ? ? ? ??211*1n n n n nN N N N N N? ? ? ? ?? ? ? ? ?? ? ? ??? ? ? ? ? 221 1 1N N N Ni i i ji i j j iy y y y? ? ? ??? ??????? ? ? ?From:221 1 1N N N Ni j i ij j i i iy y y y? ? ? ?????????? ? ? ?, w e c a n g e t :And:? ? 22 2 21111S y yN 1 N 1NNi U i Uiiy y N????? ? ? ???????22111N ( N 1 )NNiiiiN y y???? ???? ?? ???????? 221 1 111( ) ,N N Ni i i i j ji i jV y V Z y C o v Z y Z ynn ? ? ??????? ?????? ??? ? ?22111 ( ) ( , )N N Ni i j j i ji j j iy V Z y y C o v Z Zn ? ? ?????????? ? ?221111111N N Ni j ji j j in n n ny y yn N N N N N? ? ???? ? ? ?? ? ? ???? ? ? ??? ? ? ??? ? ? ? 221111111N N Ni i ji j j in n n ny y yn N N N N N? ? ???? ? ? ?? ? ? ???? ? ? ??? ? ? ??? ? ? ?22111111N N Ni i ji j j inn y y yn N N N? ? ?????? ? ???????? ??? ? ?2221 1 1111 ( 1 )( 1 )N N Ni i ii i inN y y yn N N N ? ? ??? ????? ? ? ? ????? ????? ????? ? ?2 22111111( 1 )NNiiiin n SN y yn N N N N n???? ??? ? ? ?? ? ? ? ???? ? ? ????? ? ? ??????? Now let us prove: Proof: ? ? ? ?22111E11Ni i Ui S iy y y ynN???? ? ? ??????? ??22E o rsS?? ???? ? ? ? 22E E ) (i i U Ui S i Sy y y y y y??? ? ? ?? ? ? ? ?????? ? ? ?? ? ? ??? ? ? ? ?22E i U UiSy y n y y???? ? ? ??????? ? 21E ( )Ni i UiZ y y n V y???? ? ??????? ? 2 211NiUinny y SNN???? ? ? ??????2 2 2( 1 ) ( 1 )n N N nS S n SNN??? ? ? ?? CHAPTER 3
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1