freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學(xué)公式總結(jié)(參考版)

2024-10-23 07:11本頁面
  

【正文】 化為( n2) (k2)=4 14弧長計算公式: L=n 兀 R/ 180 14扇形面積公式: S 扇形 =n 兀 R^2/ 360=LR/ 2 14內(nèi)公切線長 = d(Rr) 外公切線長 = d(R+r) 三、常用數(shù)學(xué)公式 公式分類 公式表達式 乘法與因式分解 a2b2=(a+b)(ab) a3+b3=(a+b)(a2ab。(n 2)180176。 / n 1定理 正 n 邊形的半徑和邊心距把正 n邊形分成 2n 個全等的直角三角形 14正 n邊形的面積 Sn=pnrn/ 2 p 表示正 n 邊形的周長 14正三角形面積 √3a / 4 a 表示邊長 14如果在一個頂點周圍有 k 個正 n 邊形的角,由于這些角的和應(yīng)為 360176。 的圓周角所對的弦是直徑 11推論 3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形 1定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi) 對角 12 ① 直線 L和 ⊙O 相交 d﹤ r ② 直線 L 和 ⊙O 相切 d=r ③ 直線 L 和 ⊙O 相離 d﹥ r 12切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線 12切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑 12推論 1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點 12推論 2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心 12切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角 12圓的外切四邊形的兩組對邊的和相等 12 弦切角定理 弦切角等于它所夾的弧對的圓周角 12推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等 1相交弦定理 圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等 13推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項 13切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項 13推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等 13如果兩個圓相切,那么切點一定在連心線上 13 ① 兩圓外離 d﹥ R+r ② 兩圓外切 d=R+r ③ 兩圓相交 Rr﹤ d﹤ R+r(R﹥ r) ④ 兩圓內(nèi)切 d=Rr(R﹥ r) ⑤ 兩圓內(nèi)含 d﹤ Rr(R﹥ r) 13定理 相交兩圓的連心線垂直平分兩圓的公共弦 13定理 把圓分成 n(n≥3): ⑴ 依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正 n 邊形 ⑵ 經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正 n 邊形 13定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是 同心圓 13正 n邊形的每個內(nèi)角都等于( n2) 179。d) / d 8 (3)等比性質(zhì): 如果 a/ b=c/ d=?=m / n(b+d+?+n≠0), 那么 (a+c+?+m) / (b+d+?+n)=a / b 8平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例 8推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例 8定理 如 果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 8平行于三角形的一邊,并且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應(yīng)成比例 90、定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似 9相似三角形判定定理 1 兩角對應(yīng)相等,兩三角形相似( ASA) 9直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 9判定定理 2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似( SAS) 9判定定理 3 三邊對應(yīng)成比例,兩三角形相似( SSS) 9定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似 9性質(zhì)定理 1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比 9性質(zhì)定理 2 相似三角形周長的比等于相似比 9性質(zhì)定理 3 相似三角形面積的比等于相似比的平方 9任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值 100、任意銳角的正切值等于它的余角的余切值, 任意銳角的余切值等于它的余角的正切值 10圓是定點的距離等于定長的點的集合 10圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合 10圓的外部可以看作是圓心的距離大于半徑的點的集合 10同圓或等圓的半徑相等 10到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓 10和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線 10到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 10到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等 的一條直線 10定理 不在同一直線上的三點確定一個圓。h 8 (1)比例的基本性質(zhì): 如果 a:b=c:d,那么 ad=bc 如果 ad=bc ,那么 a:b=c:d 8 (2)合比性質(zhì): 如果 a/ b=c/ d,那么 (a177。2 6菱形判定定理 1 四邊都相等的四邊形是菱形 6菱形判定定理 2 對角線互相垂直的平行四邊形是菱形 6正方形性質(zhì)定理 1 正方形的四個角都是直角,四條邊都相等 70、正方形性質(zhì)定理 2 正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 7定理 1 關(guān)于中心對稱的兩個圖形是全等的 7定理 2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 7逆定理 如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱 7等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等 7等腰梯形的兩條對角線相等 7等腰梯形判定定理 在 同一底上的兩個角相等的梯 形是等腰梯形 7對角線相等的梯形是等腰梯形 7平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等 7推論 1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰 80、推論 2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊 8三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半 8梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=( a+b) 247。 5平行四邊形性質(zhì)定理 1 平行四邊形的對角相等 5平行四邊形性質(zhì)定理 2 平行四邊形的對邊相等 5推論 夾在兩條平行線間的平行線段相等 5平行四邊形性質(zhì)定理 3 平行四邊形的對角線互相平分 5平行四邊形判定定理 1 兩組對角分別相等的四邊形是平行四邊形 5平行四邊形判定定理 2 兩組對邊分別相等的四邊 形是平行四邊形 5平行四邊形判定定理 3 對角線互相平分的四邊形是平行四邊形 5平行四邊形判定定理 4 一組對邊平行相等的四邊形是平行四邊形 60、矩形性質(zhì)定理 1 矩形的四個角都是直角 6矩形性質(zhì)定理 2 矩形的對角線相等 6矩形判定定理 1 有三個角是直角的四邊形是矩形 6矩形判定定理 2 對角線相等的平行四邊形是矩形 6菱形性質(zhì)定理 1 菱形的四條邊都相等 6菱形性質(zhì)定理 2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 6菱形面積 =對角線乘積的一半,即 S=( a179。180176。 4四邊形的外角和等于 360176。 的等腰三角形是等邊三角形 3在直角三角形中,如果一個銳角等于 30176。 1推論 1 直角三角形的兩個銳角互余 1推論 2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和 推論 3 三角形的一個外角大于 任何一個和它不相鄰的內(nèi)角 2全等三角形的對應(yīng)邊、對應(yīng)角相等 2邊角邊公理 (SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等 2角邊角公理 ( ASA)有兩角和它們的夾邊對應(yīng)相等的 兩個三角形全等 2推論 (AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等 2邊邊邊公理 (SSS) 有三邊對應(yīng)相等的兩個三角形全等 2斜邊、直角邊公理 (HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等 2定理 1 在角的平分線上的點到這個角的兩邊的距離相等 2定理 2 到一 個角的兩邊的距離相同的點,在這個角的平分線上 2角的平分線是到角的兩邊距離相等的所有點的集合 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角) 3推論 1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 3等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 3推論 3 等邊三角形的各角都相等,并且每一個角都等于 60176。 多邊形: ①N 邊形的內(nèi)角和等于( N2) 180 度 ② 多邊心內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內(nèi)角和(都等于 360 度) 平均數(shù):對于 N 個數(shù) X1, X2?XN ,我們把( X1+X2+
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1