【摘要】返回第二章一元函數(shù)微分學(xué)微積分二、反函數(shù)的求導(dǎo)法則三、復(fù)合函數(shù)求導(dǎo)法則四、初等函數(shù)的求導(dǎo)問題一、四則運算求導(dǎo)法則第二節(jié)函數(shù)的求導(dǎo)法則返回第二章一元函數(shù)微分學(xué)微積分思路:(構(gòu)造性定義)求導(dǎo)法則其它基本初等函數(shù)求導(dǎo)公式0xcos
2025-01-17 23:12
【摘要】第二節(jié)求導(dǎo)法則一、和、差、積、商的求導(dǎo)法則定理并且可導(dǎo)處也在點分母不為零們的和、差、積、商則它處可導(dǎo)在點如果函數(shù),)(,)(),(xxxvxu).0)(()()()()()(])()([)3();()()()(])()([)2();()(])()([)1(2????????????
2025-04-26 03:39
【摘要】隱函數(shù)和高階求導(dǎo)法則高等數(shù)學(xué)之——第四節(jié)隱函數(shù)和高階求導(dǎo)法則第三章導(dǎo)數(shù)與微分一.隱函數(shù)的求導(dǎo)法二.取對數(shù)求導(dǎo)法三.參數(shù)方程求導(dǎo)法四.高階導(dǎo)數(shù)例如,2sinxy?2xeyx??特點在于:可以表示成等式左邊是只含因變量,而右邊等式只含自變量。即解析式中明顯地可以用一個變量
2024-08-16 16:43
【摘要】返回后頁前頁一、導(dǎo)數(shù)的四則運算§2求導(dǎo)法則導(dǎo)數(shù)很有用,但全憑定義來計算導(dǎo)四、基本求導(dǎo)法則與公式三、復(fù)合函數(shù)的導(dǎo)數(shù)二、反函數(shù)的導(dǎo)數(shù)求導(dǎo)法則,使導(dǎo)數(shù)運算變得較為簡便.數(shù)是不方便的.為此要建立一些有效的返回返回后頁前頁一、導(dǎo)數(shù)的四則運算
2024-08-15 10:52
【摘要】第二節(jié)二、反函數(shù)的求導(dǎo)法則三、復(fù)合函數(shù)求導(dǎo)法則四、初等函數(shù)的求導(dǎo)問題一、四則運算求導(dǎo)法則機動目錄上頁下頁返回結(jié)束函數(shù)的求導(dǎo)法則第二章思路:(構(gòu)造性定義)求導(dǎo)法則其它基本初等函數(shù)求導(dǎo)公式0xcosx1??)(C
2025-07-27 04:34
【摘要】復(fù)合函數(shù)求導(dǎo)法則性質(zhì)且點可導(dǎo)在則點可導(dǎo)在而點可導(dǎo)在設(shè),)]([,)()(,)(0000xxgfyxguufyxxgu????)63(dddddd??xuuyxy00))]([(ddxxxxxgfxy????))]([(dd??xgfxy寫成導(dǎo)函數(shù)的形式為簡寫為)()(00x
2025-01-23 05:44
【摘要】§求導(dǎo)法則與導(dǎo)數(shù)公式1.0)(??C;2.1)(??????xx)(R??;3.xxcos)(sin??;4.xxsin)(cos???;5.axxaln1)(log??;xx1)(ln??;
2025-07-27 17:11
【摘要】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)大學(xué)數(shù)學(xué)(一)第十三講求導(dǎo)法則一.基本初等函數(shù)的導(dǎo)數(shù)推導(dǎo)一些基本公式啊!1.y=Cx?R(C為常數(shù))Q??????xyx0lim?????xC
2025-01-22 16:29
【摘要】山東農(nóng)業(yè)大學(xué)高等數(shù)學(xué)主講人:蘇本堂一、空間曲線的一般方程二、空間曲線的參數(shù)方程三、空間曲線在坐標面的投影§空間曲線及其方程山東農(nóng)業(yè)大學(xué)高等數(shù)
2025-07-28 04:16
【摘要】一、和、差、積、商的求導(dǎo)法則二、反函數(shù)的求導(dǎo)法則三、復(fù)合函數(shù)的求導(dǎo)法則第二節(jié)求導(dǎo)法則與基本初等函數(shù)求導(dǎo)公式四、基本求導(dǎo)法則與求導(dǎo)公式五、小結(jié)思考題一、函數(shù)的和、差、積、商的求導(dǎo)法則定理1并且處也可導(dǎo)在點除分母不為零外們的和、差、積、商則它處可導(dǎo)在點如
2024-09-03 12:38
【摘要】第四節(jié)一元復(fù)合函數(shù)求導(dǎo)法則本節(jié)內(nèi)容:一、多元復(fù)合函數(shù)求導(dǎo)的鏈式法則二、多元復(fù)合函數(shù)的全微分微分法則機動目錄上頁下頁返回結(jié)束多元復(fù)合函數(shù)的求導(dǎo)法則一、多元函數(shù)與一元函數(shù)的復(fù)合(,)zfxy?()()xtvt???????多元
2025-01-22 14:36
【摘要】隱函數(shù)的求導(dǎo)法則一、一個方程的情形二、方程組的情形一、一個方程的情形0),(.1?yxF定義:).(0),(,,0),(,xyyyxFyxyxFyx???隱函數(shù)在該區(qū)間內(nèi)確定了一個稱方程此時值與之對應(yīng)相應(yīng)地總有唯一的時取某一區(qū)間的任一值在一定條件下,當,滿足方
2025-01-23 05:31
【摘要】簡單復(fù)合函數(shù)的求導(dǎo)法則:設(shè)函數(shù)u(x)、v(x)是x的可導(dǎo)函數(shù),則1)(()())''()'()uxvxuxvx???2)(()())''()()()'()uxvxuxvxuxvx???推論:[
2024-11-16 01:24
【摘要】第5節(jié)隱函數(shù)求導(dǎo)法則0),(.1?yxF0),,(.2?zyxF一、一個方程情形隱函數(shù)存在定理1設(shè)函數(shù)),(yxF在點),(00yxP的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且0),(00?yxF,0),(00?yxFy,則方程0),(?yxF在點),(00yxP的某一鄰域內(nèi)恒能唯
2024-08-16 18:05
【摘要】復(fù)合函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開,利用導(dǎo)數(shù)的四則運算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?為了解決上面
2024-11-06 19:25