【摘要】樂學在線課程:咨詢電話:400-811-66881二次函數(shù)中的存在性問題(講義)一、知識點睛解決“二次函數(shù)中存在性問題”的基本步驟:①____________.研究確定圖形,先畫圖解決其中一種情形.②①的結果是否合理,再找其他分類,類比
2025-01-13 14:34
【摘要】二次函數(shù)中的存在性問題1.如圖,矩形OABC在平面直角坐標系xOy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O,A兩點,直線AC交拋物線于點D.(1)求拋物線的解析式;(2)求點D的坐標;(3)若點M在拋物線上,點N在x軸上,是否存在以A,D,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,
2025-04-07 04:23
【摘要】........已知,拋物線交軸于點A、B,交軸于點C.1、線段最值①線段和最小點P是拋物線對稱軸上一動點,當點P坐標為多少時,PA+PC值最小.②線段差最大點Q是拋物線對稱軸上一動點,當點Q坐標為多少時,|QA-QC|值最大
2025-03-27 06:25
【摘要】........二次函數(shù)存在性問題,動點問題,面積問題(m-2,0),B(m+2,0)兩點,記拋物線頂點為C,且AC⊥BC.(1)若m為常數(shù),求拋物線的解析式;(2)若m為小于0的常數(shù),那么(1)中的拋物線經(jīng)過怎么樣的平移可以使頂點在坐標原點?(3)
【摘要】1二次函數(shù)的存在性問題(相似三角形)1、已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一交點為B。(1)求拋物線的解析式;(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標;(3)連接OA、AB,如圖②,在x軸下方的拋物線上是否存在點P,使得△OBP與△
2024-08-15 23:56
【摘要】....中考數(shù)學專題復習——存在性問題存在性問題是指判斷滿足某種條件的事物是否存在的問題,這類問題的知識覆蓋面較廣,綜合性較強,題意構思非常精巧,解題方法靈活,對學生分析問題和解決問題的能力要求較高,是近幾年來包括深圳在內各地中考的“熱點”。這類題目解法的一般思路是:假設存在→推理論證→得出
2025-06-26 13:55
【摘要】........1.如圖,已知拋物線y=x2+bx+c的圖象經(jīng)過點A(l,0),B(﹣3,0),與y軸交于點C,拋物線的頂點為D,對稱軸與x軸相交于點E,連接BD.(1)求拋物線的解析式.(2)若點P在直線BD上,當PE=PC時,求點P的坐標.(3)在(
2025-06-26 13:54
【摘要】1第十三講二次函數(shù)中的存在性問題(講義)一、知識點睛解決“二次函數(shù)中存在性問題”的基本步驟:①____________.研究確定圖形,先畫圖解決其中一種情形.②①的結果是否合理,再找其他分類,類比第一種情形求解.③點的運動
2024-08-15 17:18
【摘要】........二次函數(shù)與三角形的存在性問題一、預備知識1、坐標系中或拋物線上有兩個點為P(x1,y),Q(x2,y)(1)線段對稱軸是直線(2)AB兩點之間距離公式:中點公式:已知兩點,則線段
2025-03-27 06:24
【摘要】........函數(shù)中的恒成立、恰成立和能成立問題教學目標:結合具體函數(shù),討論關于任意與存在性問題的一般解題方法過程與方法通過研究具體函數(shù)及其圖象,將任意與存在性問題轉化為函數(shù)值域關系或最值關系問題:已知函數(shù),函數(shù),當時,對任意,是否存在,
2025-03-27 12:15
【摘要】......二次函數(shù)平行四邊形存在性問題例題一.解答題(共9小題)1.如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,)三點.(1)求拋物線的解析式;(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,
2025-03-27 06:26
【摘要】......老師姓名學生姓名學管師學科名稱年級上課時間月日__:00--__:00課題名稱二次函數(shù)與平行四邊形的存
【摘要】姓名;類型一:反比例函數(shù)中等腰三角形找點問題1、如圖,已知反比例函數(shù)(k<0)的圖象經(jīng)過點A(—,m)點A作AB⊥x軸于點B,且△AOB的面積為.(1)求k和m的值;(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點A,并且與x軸相交于點C,求|AO|:|AC|的值;(3)若D為坐標軸上一點,使△AOD是以AO為一腰的等腰三角形,請寫出所有滿足條件的D點的坐標.
2025-03-27 23:29
【摘要】........二次函數(shù)中直角三角形存在性問題1.找點:在已知兩定點,確定第三點構成直角三角形時,要么以兩定點為直角頂點,,構造兩條直線與已知直線垂直;以動點為直角頂點時,以已知線段為直徑構造圓找點2.方法:以兩定點為直角
【摘要】一次函數(shù)之存在性問題知識點睛函數(shù)背景下研究存在性問題,先把函數(shù)信息轉化為幾何信息,然后按照存在性問題來處理.1.如圖,直線與坐標軸分別交于A,B兩點,點C在y軸上,且,直線CD⊥AB于點P,交x軸于點D.(1)求點P的坐標;(2)坐標系內是否存在點M,使以點B,P,D,M為頂點的四邊形為平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.
2025-03-27 05:36