【摘要】利用空間向量解決立體幾何問(wèn)題數(shù)學(xué)專(zhuān)題二學(xué)習(xí)提綱二、立體幾何問(wèn)題的類(lèi)型及解法1、判斷直線(xiàn)、平面間的位置關(guān)系;(1)直線(xiàn)與直線(xiàn)的位置關(guān)系;(2)直線(xiàn)與平面的位置關(guān)系;(3)平面與平面的位置關(guān)系;2、求解空間中的角度;3、求解空間中的距離。1、直線(xiàn)的方向向量;2、平面的法向量。
2024-11-28 22:52
【摘要】空間向量坐標(biāo)法---解決立體幾何問(wèn)題一.建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,能求點(diǎn)的坐標(biāo);1、三條直線(xiàn)交于一點(diǎn)且兩兩垂直;方便求出各點(diǎn)的坐標(biāo)。2、如何求出點(diǎn)的坐標(biāo):先求線(xiàn)段的長(zhǎng)度(特別是軸上線(xiàn)段):由已知條件可全部求出來(lái);若不能,則可先設(shè)出來(lái)。(1)軸上的點(diǎn)--------X軸--(a,0,0),y軸--(0,b,0),z軸--(0,0,c)(2)三個(gè)坐標(biāo)面上的點(diǎn)-
2025-03-28 06:42
【摘要】利用空間向量解決立體幾何問(wèn)題一:利用空間向量求空間角(1)兩條異面直線(xiàn)所成的夾角范圍:兩條異面直線(xiàn)所成的夾角的取值范圍是。向量求法:設(shè)直線(xiàn)的方向向量為,其夾角為,則有1.在正三棱柱ABC-A1B1C1,若AB=BB1,則AB1與C1B所成角的大小( )A.60° B.90°C.105°
2025-06-10 16:29
【摘要】1.立體幾何初步(1)空間幾何體①認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu).②能畫(huà)出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)用斜二測(cè)法畫(huà)出它們的直觀(guān)圖.③會(huì)用平行投影與中心
2025-06-19 12:13
【摘要】第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)1.知識(shí)與技能掌握空間向量的數(shù)乘運(yùn)算.理解共線(xiàn)向量,直線(xiàn)的方向向量和共面向量.2.過(guò)程與方法
2024-10-19 20:16
【摘要】利用空間向量解立體幾何問(wèn)題2、例2已知三角形的頂點(diǎn)是,,,試求這個(gè)三角形的面積。分析:可用公式來(lái)求面積解:∵,,∴,,,∴,∴所以,.1、綜述(1)由于任意兩個(gè)空間向量都可以轉(zhuǎn)化為平面向量,所以空間兩個(gè)向量的夾角的定義和取值范圍、兩個(gè)向量垂直的定義和符號(hào)、兩個(gè)空間向量的數(shù)量積等等,都與平面向量相同。(2)利用空間向量解題的方法有2類(lèi):(i)利
2025-06-10 16:39
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問(wèn)題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類(lèi)重要的問(wèn)題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角的問(wèn)題。數(shù)量積:夾角公式:異面直線(xiàn)所成角的范圍:思考:結(jié)論:題型
2024-11-15 02:54
【摘要】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱(chēng)為向量.相等向量、負(fù)向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2024-10-06 17:17
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問(wèn)題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類(lèi)重要的問(wèn)題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問(wèn)題。建立空間直角坐標(biāo)系,解立體幾何題1122330???abab
2024-11-13 01:53
【摘要】1上杭縣高級(jí)中學(xué)講課人:周文才時(shí)間:07年12月14日2345678所以:解:以點(diǎn)C為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系如圖所示,設(shè)則C||所以與所成角的余弦值為9設(shè)平面xyz點(diǎn)評(píng):找到
2024-11-16 16:42
【摘要】空間向量在立體幾何中的應(yīng)用5前段時(shí)間我們研究了用空間向量求角(包括線(xiàn)線(xiàn)角、線(xiàn)面角和面面角)、求距離(包括線(xiàn)線(xiàn)距離、點(diǎn)面距離、線(xiàn)面距離和面面距離)今天我來(lái)研究如何利用空間向量來(lái)解決立體幾何中的有關(guān)證明及計(jì)算問(wèn)題。一、空間向量的運(yùn)算及其坐標(biāo)運(yùn)算的掌握二、立體
2025-01-11 14:05
【摘要】1用空間向量處理立體幾何的問(wèn)題立體幾何著重的是研究點(diǎn)、線(xiàn)、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面)以及三種角(異面直線(xiàn)所成的角、直線(xiàn)與平面所成的角和二面角)的計(jì)算。自上海高考試卷內(nèi)容改革以來(lái),純粹用立體幾何的公理、定理來(lái)證明或計(jì)算立體幾何問(wèn)題越來(lái)越少,而借助于向量的計(jì)算方法來(lái)處理立體幾何的問(wèn)題卻越來(lái)越多。本講座就是詳細(xì)
2024-09-09 17:12
【摘要】;菲華論壇;在西墎城,要小心壹點(diǎn).壹旦有人對(duì)付烈焰,你就立刻帶著所有烈焰の人,進(jìn)入鞠氏宅院.”鞠言對(duì)高鳳說(shuō)道.“嗯,俺明白.”高鳳點(diǎn)頭.她也想跟著鞠言壹起走,但是,她不能將整個(gè)烈焰商會(huì)扔下.至于帶著烈焰の所有人跟鞠言走,那就更不可能了.“事不宜遲,鞠言,俺們立刻返回藍(lán)曲郡城.”鄒尚云揮手說(shuō)道.兩人當(dāng)即,便離開(kāi)西墎
2025-08-07 23:24
【摘要】空間向量之應(yīng)用3利用空間向量求距離課本P42如果表示向量a的有向線(xiàn)段所在直線(xiàn)垂直于平面?,則稱(chēng)這個(gè)向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-11 13:41
【摘要】借助向量解立體幾何問(wèn)題知識(shí)要點(diǎn)(其中為向量的夾角)。一、求點(diǎn)到平面的距離定義:一點(diǎn)到它在一個(gè)平面內(nèi)的正射影的距離叫做點(diǎn)到平面的距離。即過(guò)這個(gè)點(diǎn)到平面垂線(xiàn)段的長(zhǎng)度。一般方法:利用定義先做出過(guò)這個(gè)點(diǎn)到平面的垂線(xiàn)段,再計(jì)算這個(gè)垂線(xiàn)段的長(zhǎng)度。PBA向量法:PA
2024-11-11 01:07