【正文】
轉(zhuǎn)向角度的后輪的轉(zhuǎn)向中心確定的行的前面和平行于第三軸。車輛的轉(zhuǎn)彎半徑在低速度預(yù)計(jì)將減少,如果是指導(dǎo)后輪與前輪相反角度。此外,側(cè)向力對(duì)第三軸是遠(yuǎn)遠(yuǎn)大于部隊(duì)在第一、二軸。在案件的車輛牽引力的恭敬,左右輪 情況相同 。在模擬中,假定有一個(gè)假想的車輪在中東的兩只輪子在第一軸和角的虛盤是用來(lái)代表平均前輪的角度。低線表明車輛全輪轉(zhuǎn)向結(jié)果你表現(xiàn)在后輪轉(zhuǎn)向角度,全輪轉(zhuǎn)動(dòng)的轉(zhuǎn)彎半徑明顯降低。后四輪的轉(zhuǎn)角在它轉(zhuǎn)向能力的限度內(nèi)固定為最大。轉(zhuǎn)向半徑相對(duì)于的實(shí)驗(yàn)和實(shí)驗(yàn)結(jié)果的預(yù)測(cè)。其中一輛車是前四輪轉(zhuǎn)動(dòng)的八輪車輛,這輛車標(biāo)記為 A,另一輛被標(biāo)記為 B,這是一輛全輪轉(zhuǎn)動(dòng)的八輪車,最大的摩擦情況取決于陸地的情況。差距是安裝在每個(gè)車軸分配均等的牽引力兩側(cè)車輪和車輪的轉(zhuǎn)速取決于輪胎路徑長(zhǎng)度。摩擦力這樣計(jì)算: ||/ isisii VVuPQ ? 圖 4 顯示了橫向與縱向力,其中 K=. 由于驅(qū)動(dòng)力是由發(fā)動(dòng)機(jī)轉(zhuǎn)移到車輪上,驅(qū)動(dòng)力和每個(gè)車輪轉(zhuǎn)速受到列車類型的影響。 一個(gè)無(wú)量綱滑移率 S 的定義是規(guī)范的滑移速度與規(guī)模的周邊速度比值。水平剪切力下輪胎由于交互與地面都假定為線性依賴胎面從胎面基地位移。刷模型是分析模型物理派生的,已被廣泛用于車輛動(dòng)力學(xué)研究。 運(yùn)動(dòng)方程式 牛頓第二定律應(yīng)用于汽車產(chǎn)量: ???niiQmV 21 ?? ?? ni ii QxeI 2 13 )(? ( 213 eee ?? ) 其中 m和 I分別是車輛的質(zhì)量和慣性矩,摩擦力 Q是指車輪受到的力,以及xi 表示車輪的位置坐標(biāo),在穩(wěn)定的轉(zhuǎn)向中,汽車運(yùn)動(dòng)方程式中包含有 V和 Q。結(jié)果表明,提出了數(shù)學(xué)模型,可以準(zhǔn)確地評(píng)估多軸車輛的轉(zhuǎn)向特性 8 2 多軸車輛的數(shù)學(xué)模型 坐標(biāo)系統(tǒng)和車輛的運(yùn)動(dòng)學(xué) 圖 1所示的坐標(biāo)系統(tǒng),用來(lái)形容多軸車輛的速度矢量 V和偏航角速度重心 Q。 本文介紹了一種計(jì)算機(jī)模擬模型來(lái)預(yù)測(cè)多軸車輛的轉(zhuǎn)向特點(diǎn),汽車運(yùn)動(dòng)的微方程構(gòu)造為平地,牽引力和側(cè)力的 作用下充氣輪胎由于與地面交互的基本精神的重要性,來(lái)預(yù)測(cè)車輛的議案,在數(shù)值模擬,基于物理的方法刷模型通過(guò)輪胎模型,在接觸區(qū)域里刷模型是理想化的代表輪胎?;旌纤妮嗈D(zhuǎn)向系統(tǒng)正在開發(fā),以補(bǔ)充獨(dú)立的轂輪馬達(dá)驅(qū)動(dòng)器的能力。最近運(yùn)行與充氣輪胎的齒輪的規(guī)模不斷擴(kuò)大至重型車輛的這些領(lǐng)域。車輪中心轉(zhuǎn)彎半徑,滑移角被包含其中,通過(guò)車輪角的方程式解決,說(shuō)明了轉(zhuǎn)折點(diǎn)特征多軸車輛,效果的基本參數(shù),如車速,轉(zhuǎn)向角度和行駛系統(tǒng)類型,多軸車輛的樣本。 , 8? =176。 , 4? =176。 Mathematical model 1. Introduction Track laying running gear has been mainly used in the fields of military and construction for heavy vehicle applications. Recently, running gear with pneumatic tires has been expanding to heavy vehicles in such fields, since tire equipped vehicles excel in speed, silence and energy e?cogency. Several papers have been published on the subject of tractability and maneuverability of multiaxle vehicles [1,2]. A theoretical study to evaluate the turning motion of skid steering vehicles was also developed by Renoir and Cravat [3]. More recent army vehicles, such as the MODIX, are designed to be equipped with independent wheel drive and steering, and load control suspensions [4]. The MODIX can turn by normal steering, skid steering, or a mixture of both. Additionally, the conversion from mechanical drive to an electric drive unit controlled by each inhub motor has been examined [5–7]. A hybrid wheel steer system is being developed to plement the independent drive capability of the inhub wheel motors. However, there has not been a paper or technical publication dealing with the subject prehensively and in a logical sequence because the phenomenon of dynamic motions of the multiaxle vehicle is plex. This paper describes a puter simulation model to predict turning characteristics of multiaxle vehicles. The equations of motion for the vehicles are constructed for level ground. Tractate and side forces acting under pneumatic tires due to interact