【正文】
然而,盡管有可能損壞機床結構或機械傳動系統(tǒng),也有使用帶有特高轉矩步進電機的其他系統(tǒng),此時,電動機有足夠能力來應付系統(tǒng)中任何偶然事故。比如,一臺數(shù)控銑床的工作臺突然過載,阻力矩超過電機轉矩時,將沒有響應信號送回到控制器。在這個系統(tǒng)中,沒有信息反饋到控制單元的自矯正過程。 環(huán)的一個分析者把真實的位置與需要的位置作比較,而且不同是考慮過的錯誤。 一些工業(yè)的機械手使用高抬腿運步的馬乘汽車駕駛員,而且步進電機是有用的在數(shù)字受約束的工作母機中。當多數(shù)是索引或其他的自動化申請所必備者的時候,步進電機對運行一個精確的有角進步也是理想的。有幾個理由可以說明步進電機是一個自動化申請的非常有用的驅動裝置。接受到的信號與紙帶輸入的信號相比較,它們之間的任何偏差都可得到糾正。裝有這種直接反饋檢查裝置的數(shù)控機床有一個閉環(huán)系統(tǒng) 裝置。閱讀裝置必須要能以比控制系統(tǒng)處理數(shù)據(jù)更快的速度來閱讀數(shù)據(jù)程序塊。 裝在控制單元里的紙帶閱讀機,通過其內(nèi)的硅光二極管,檢測到穿過移動紙帶上的孔漏過的光線,將光束轉變成電能,并通過放大來進一步加強信號,然后將信號送到控制單元里的寄存器,由它將動作信號傳到機床驅動裝置??刂茊卧邮芎蛢Υ婢幋a數(shù)據(jù),直至形成一個完整的信息程序塊,然后解釋數(shù)控指令,并引導機床得到所需運動。通常,必須要試走幾次來排除錯誤,才能得到一個可用的工作紙帶。穿孔紙帶是在帶有特制穿孔附件的打字機或直接連到計算機上的紙帶穿孔裝置上做成的。帶子一旦安裝好,就可反復使用而無需進一步處理。紙帶上的整個數(shù)控程序由這些連續(xù)數(shù)據(jù)單元連接而成。在傳統(tǒng)的數(shù)控系統(tǒng)中,八信道穿孔紙帶是最常用的數(shù)據(jù)輸入形式,紙帶上的編碼指令由一系列稱為程序塊的穿孔組成。人工輸入需要操作者控制每個操作,這是一個既慢又單調(diào)的過程,除了簡單加工場合或特殊情況,已很少使用。撥號盤通常連到 一個同步解析器或電位計的模擬裝置上。人工方法作為輸人數(shù) 據(jù)唯一方法時,只限于少量輸入。 數(shù)控系統(tǒng)由下列組件組成:數(shù)據(jù)輸入裝置,帶控制單元的磁帶閱讀機,反饋裝置和切削機床或其他形式的數(shù)控設備。 數(shù)控車床刀架上安裝銑削動力頭后可以大大擴展數(shù)控車床的加工能力。這種刀架的優(yōu)點是制造成本低,但缺乏通用性。尾架有普通液壓尾架和可編程液壓尾架。 液壓卡盤是數(shù)控車削加工時夾緊工件的重要附件,對一般回轉類零件可采用普通液壓卡盤;對零件被夾持部位不是圓柱形的零件,則需要采用專用卡盤;用棒料直接加工零件時需要采用彈簧卡盤。 普通數(shù)控車床 (3)車削加工中心:在普通數(shù)控車床的基礎上,增加了 C軸和動力頭,更高級的機床還帶有刀庫,可控制 X、 Z和 C三個坐標軸,聯(lián)動控制軸可以是 (X、 Z)、 (X、 C)或 (Z、C)。數(shù)控系統(tǒng)功能強,自動化程度和加工精度也比較高,適用于一般回轉類零件的車削加工。成本較低,自動化程度和功能都比較差,車削加工精度也不高,適用于要求不高的回轉類零件的車削加工。 數(shù)控車床的結構 數(shù)控車床的組成:數(shù)控系統(tǒng)、床身、主軸、進給系統(tǒng)、回轉刀架、操作面板和輔助系統(tǒng)等。編程及其他附屬設備,可用來在機外進行零件的程序編制、存儲等。輔助裝置,指數(shù)控機床的一些必要的配套部件,用以保證數(shù)控機床的運行,如冷卻、排屑、潤滑、照明、監(jiān)測等。他在數(shù)控裝置的控制下通過電氣或電液伺服系統(tǒng)實現(xiàn)主軸和進給驅動。數(shù)控裝置,是數(shù)控機床的核心,包括硬件以及相應的軟件,用于輸入數(shù)字化的零件程序,并完成輸入信息的存儲、數(shù)據(jù)的變換、插補運算以及實現(xiàn)各種控制功能。一般能自動完成內(nèi)外圓柱面、圓錐面、球面、圓柱螺紋、槽及端面等工序的切削加工。這種改變程序的能力使數(shù)控適合于中、小批量生產(chǎn),寫一段新程序遠比對加工設備做大的改動容易得多。數(shù)字、字母和符號用適當?shù)母袷骄幋a為一個特定工件定義指令程序。 only the coordinates of the end points of the motions are accurately controlled. This type of control is suitable for drill presses and some boring machines, where drilling, tapping, or boring operations must be performed at various locations on the work piece. StraightLine or Linear Control StraightLine control systems are able to move the cutting tool parallel to one of the major axes of the machine tool at a controlled rate suitable for machining. It is normally only possible to move in one direction at a time, so angular cuts on the work piece are not possible, consequently, for milling machines, only rectangular configurations can be machined or for lathes only surfaces parallel or perpendicular to the spindle axis can be machined. This type of controlled motion is often referred to as linear control or a halfaxis of control. Machines with this form of control are also capable of pointtopoint control. Continuous Path or Contouring Control In continuous path control the motions of two or more of the machine axes are controlled simultaneously, so that the position and velocity of the can be tool are changed continuously. In this way curves and surfaces can be machined at a controlled feed rate. It is the function of the interpolator in the controller to determine the increments of the individual controlled axes of the machines necessary to produce the desired motion. This type of control is referred to as continuous control or a full axis of control. Some terminology concerning controlled motions for NC machines has been introduced. For example, some machines are referred to as fouror fiveor even sixaxis machines. For a vertical milling machine three axes of control are fairly obvious, these being the usual X, Y, Z coordinate directions. A fourth or fifth axis of control would imply some form of rotary table to index the work piece or possibly to provide angular motion of the work head. Thus, in NC terminology an axis of control is any controlled motion of the machine elements (spindles, tables, etc). A further plication is use of the term halfaxis of control。 With the stick anticipate