freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題訓(xùn)練經(jīng)典題目(及答案)(7)(參考版)

2025-04-05 05:52本頁(yè)面
  

【正文】 或北偏西15176。設(shè)DC=x,則BD=8x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8x)2,解得:x=3,∴CD=3.故選:C.【點(diǎn)睛】本題主要考查了勾股定理與折疊問(wèn)題,熟練掌握翻折的性質(zhì)和勾股定理是解決問(wèn)題的關(guān)鍵.23.B解析:B【分析】要求長(zhǎng)方體中兩點(diǎn)之間的最短路徑,最直接的作法,就是將長(zhǎng)方體展開(kāi),然后利用兩點(diǎn)之間線段最短解答.【詳解】解:根據(jù)題意,如圖所示,最短路徑有以下三種情況:(1)沿,剪開(kāi),得圖;(2)沿,剪開(kāi),得圖;(3)沿,剪開(kāi),得圖;綜上所述,最短路徑應(yīng)為(1)所示,所以,即.故選:B.【點(diǎn)睛】此題考查最短路徑問(wèn)題,將長(zhǎng)方體從不同角度展開(kāi),是解決此類問(wèn)題的關(guān)鍵,注意不要漏解.24.C解析:C【分析】,甲乙兩船航行的路程,進(jìn)而可根據(jù)勾股定理的逆定理得出乙船的航行方向與甲船的航行方向垂直,進(jìn)一步即可得出答案.【詳解】解:,甲船航行的路程是16=24海里,乙船航行的路程是12=18海里;∵,∴乙船的航行方向與甲船的航行方向垂直,∵甲船的航行方向是北偏東75176。角的直角三角形的性質(zhì),及勾股定理等知識(shí),熟練掌握全等三角形的判定與性質(zhì)是解答本題的關(guān)鍵.22.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性質(zhì)求得BE=4,設(shè)DC=,則BD=,在△BDE中,利用勾股定理列方程求解即可.【詳解】在Rt△ABC中,由勾股定理可知:AB=,由折疊的性質(zhì)可知:DC=DE,AC=AE=6,∠DEA=∠C=90176。DE⊥AB,∴CD=DE,由AD=AD,所以,Rt△ACD≌Rt△AED,所以,AC=AE.∵E為AB中點(diǎn),∴AC=AE=AB,所以,∠B=30176。DB中,由勾股定理得:A39。D⊥BG于D,∵AE=A39。B=20cm,延長(zhǎng)BG,過(guò)A39。連接A39。在Rt△ABD中,根據(jù)勾股定理得:BD===4BC=2BD=24=8.故選C.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)及勾股定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.17.A解析:A【解析】分析:直接利用勾股定理的逆定理進(jìn)而結(jié)合直角三角形面積求法得出答案.詳解:∵52+122=132,∴三條邊長(zhǎng)分別為5里,12里,13里,構(gòu)成了直角三角形,∴這塊沙田面積為:550012500=7500000(平方米)=(平方千米).故選A.點(diǎn)睛:此題主要考查了勾股定理的應(yīng)用,正確得出三角形的形狀是解題關(guān)鍵.18.A解析:A【分析】連接FC,根據(jù)基本作圖,可得OE垂直平分AC,由垂直平分線的性質(zhì)得出.再根據(jù)ASA證明,那么,等量代換得到,利用線段的和差關(guān)系求出.然后在直角中利用勾股定理求出CD的長(zhǎng).【詳解】解:如圖,連接FC,則.,.在與中,,,.在中,,.故選A.【點(diǎn)睛】本題考查了作圖﹣基本作圖,勾股定理,線段垂直平分線的判定與性質(zhì),全等三角形的判定與性質(zhì),難度適中.求出CF與DF是解題的關(guān)鍵.19.B解析:B【分析】依據(jù)作圖即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,進(jìn)而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【詳解】如圖所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90176。AC=3,BC=4,根據(jù)勾股定理求得AB=5,設(shè)點(diǎn)C到AB的距離為h,即可得hAB=ACBC,即h5=34,解得h= ,故選D.16.C解析:C【分析】根據(jù)等腰三角形的三線合一得出∠ADB=90176。AC=9,BC=12,∴,∵AD是∠BAC的平分線,∴∠CAD=∠EAD,在△ACD和△AED中,∴△ACD≌△AED(AAS),∴AE=AC=9.∵EQ⊥AC,∠ACB=90176。OA=4,則AB=2,OB=2,所以A(-2,-2),故選B.13.B解析:B【分析】過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,過(guò)點(diǎn)E作EQ⊥AC于點(diǎn)Q,EQ交AD于點(diǎn)P,連接CP,此時(shí)PC+PQ=EQ是最小值,根據(jù)勾股定理可求出AB的長(zhǎng)度,再根據(jù)EQ⊥AC、∠ACB=90176。∴BC=BC′=8,根據(jù)勾股定理可得DC′=.故選:B.【點(diǎn)睛】此題考查了軸對(duì)稱﹣線路最短的問(wèn)題,確定動(dòng)點(diǎn)P為何位置時(shí) PC+PD的值最小是解題的關(guān)鍵.10.A解析:A【分析】連接FC,根據(jù)基本作圖,可得OE垂直平分AC,由垂直平分線的性質(zhì)得出AF=FC.再根據(jù)ASA證明△FOA≌△BOC,那么AF=BC=3,等量代換得到FC=AF=3,利用線段的和差關(guān)系求出FD=ADAF=1.然后在直角△FDC中利用勾股定理求出CD的長(zhǎng).【詳解】解:如圖,連接FC,∵點(diǎn)O是AC的中點(diǎn),由作法可知,OE垂直平分AC,∴AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA與△BOC中, ,∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,F(xiàn)D=ADAF=86=2.在△FDC中,∵∠D=90176?!唷螩BC′=90176。于是得到∠CBC′=90176?!郟2D=P1P2,∴P1D=a,∵P1P2=P2P3,∴P1P3=2P1D =a,∵∠P4P3P5=60176?!唷螾6P5B=90176。 ∴∠P5P4P6=75176?!唷螾4P3P5=60176?!唷螾3P2P4=45176?!唷螾2P1P3=30176?!唷螦OE=90176。AD⊥OM,∴△OAD是等腰直角三角形,∠OAD=45176?!郆M==10,∴DN+MN的最小值是10.故選:C.【點(diǎn)睛】此題考查正方形的性質(zhì)和軸對(duì)稱及勾股定理等知識(shí)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1