freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx九年級數(shù)學(xué)一模試題分類匯編——平行四邊形綜合含詳細答案(參考版)

2025-04-01 22:02本頁面
  

【正文】 AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因為AE=nPA,所以PE==CQ=PD=ADAP=.所以AP=.所以=.問題2:(1)如圖2,設(shè)對角線與相交于點.所以G是DC的中點,作QHBC,交BC的延長線于H,因為AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由圖知,當(dāng) AB時,的長最小,即=CH=4.易得四邊形BPQH為矩形,所以QH=BP=AP.所以.(若學(xué)生有能力從梯形中位線角度考慮,若正確即可評分.但講評時不作要求)(2)PQ的最小值為..考點:1.直角三角形的性質(zhì);2.全等三角形的判定與性質(zhì);3.平行四邊形的性質(zhì);4矩形的判定與性質(zhì).。AC=4,BC=3,P為AC邊上的一動點,以PB,PA為邊構(gòu)造□APBQ,求對角線PQ的最小值及PQ最小時的值.(1)在解決這個問題時,小明構(gòu)造出了如圖2的輔助線,則PQ的最小值為 ,當(dāng)PQ最小時= _____ __;(2)小明對問題1做了簡單的變式思考.如圖3,P為AB邊上的一動點,延長PA到點E,使AE=nPA(n為大于0的常數(shù)).以PE,PC為邊作□PCQE,試求對角線PQ長的最小值,并求PQ最小時的值;問題2:在四邊形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如圖4,若為上任意一點,以,為邊作□.試求對角線長的最小值和PQ最小時的值.(2)若為上任意一點,延長到,使,再以,為邊作□.請直接寫出對角線長的最小值和PQ最小時的值.【答案】問題1:(1)3,;(2)PQ=,=.問題2:(1)=4,.(2)PQ的最小值為..【解析】試題分析:問題1:(1)首先根據(jù)條件可證四邊形PCBQ是矩形,然后根據(jù)條件“四邊形APBQ是平行四邊形可得AP=QB=PC,從而可求的值.(2)由題可知:當(dāng)QP⊥AC時,PQ最?。^點C作CD⊥AB于點D.此時四邊形CDPQ為矩形,PQ=CD,在Rt△ABC中,∠C=90176?!唷鰽HE≌△BEF.同理可證△MFG≌△BEF.∴GM=BF=AE=2.∴FC=BC-BF=10.∴.(2)過點G作GM⊥BC交BC的延長線于M,連接HF.∵AD∥BC,∴∠AHF=∠MFH.∵EH∥FG,∴∠EHF=∠GFH.∴∠AHE=∠MFG.又∵∠A=∠GMF=90176。.∵∠AEH+∠AHE=90176。.在△AEM與△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)由(1)(2)可知當(dāng)∠An2MN等于n邊形的內(nèi)角時,結(jié)論An2M=MN仍然成立;即∠An2MN=時,結(jié)論An2M=MN仍然成立;故答案為[].點睛:本題綜合考查了正方形、等邊三角形的性質(zhì)及全等三角形的判定,同時考查了學(xué)生的歸納能力及分析、解決問題的能力.難度較大.13.已知:在矩形ABCD中,AB=10,BC=12,四邊形EFGH的三個頂點E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.(1)如圖①,當(dāng)四邊形EFGH為正方形時,求△GFC的面積;(2)如圖②,當(dāng)四邊形EFGH為菱形,且BF=a時,求△GFC的面積(用a表示);(3)在(2)的條件下,△GFC的面積能否等于2?請說明理由.【答案】(1)10;(2)12-a;(3)不能【解析】解:(1)過點G作GM⊥BC于M.在正方形EFGH中,∠HEF=90176。.∵N是∠DCP的平分線上一點,∴∠NCP=45176?!螧∠AMB=∠MAB=∠MAE,BE=ABAE=BCMC=BM,∴∠BEM=45176。AB=BC.∴∠NMC=180176?!唷螹CN=120176?!唷螦EM=120176。∠AMN∠AMB=180176。時,結(jié)論An﹣2M=MN仍然成立.(不要求證明) 【答案】【解析】分析:(1)要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據(jù)全等三角形的對應(yīng)邊成比例得出AM=MN.(2)同(1),要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據(jù)全等三角形的對應(yīng)邊成比例得出AM=MN.詳(1)證明:在邊AB上截取AE=MC,連接ME.在正△ABC中,∠B=∠BCA=60176。求證:AM=MN.(2)若將(1)中“正三角形ABC”改為“正方形ABCD”,N是∠DCP的平分線上一點,若∠AMN=90176。2=BF2+D39。F=2﹣,∴Rt△BD39。∵AB=2=AD39?!唷螧AD39。于F,旋轉(zhuǎn)可得,∠DAD39。E2+BE2=()2+(2+)2=16+8②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60176。E中,BD39。E=AD39。∵AB=2=AD39。∴∠EAD39。E⊥AB,交BA的延長線于E,由旋轉(zhuǎn)可得,∠DAD39。如圖所示:過D39。∴∠AMF=∠MAN=∠ANF=90176。②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60176。平方的值.【答案】(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】【分析】(1)依據(jù)點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據(jù)等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90176。D39。得到正方形AB39。時,猜想此時線段CF,AE,OE之間有怎樣的數(shù)量關(guān)系,直接寫出結(jié)論不必證明.【答案】(1)OE=OF.理由見解析;(2)補全圖形如圖所示見解析,OE=OF仍然成立;(3)CF=OE+AE或CF=OE﹣AE.【解析】【分析】(1)根據(jù)矩形的性質(zhì)以及垂線,即可判定,得出OE=OF;(2)先延長EO交CF于點G,通過判定,得出OG=OE,再根據(jù)中,即可得到OE=OF;(3)根據(jù)點P在射線OA上運動,需要分兩種情況進行討論:當(dāng)點P在線段OA上時,當(dāng)點P在線段OA延長線上時,分別根據(jù)全等三角形的性質(zhì)以及線段的和差關(guān)系進行推導(dǎo)計算即可.【詳解】(1)OE=OF.理由如下:如圖1.∵四邊形ABCD是矩形,∴ OA=OC.∵,∴.∵在和中,∴,∴ OE=OF;(2)補全圖形如圖2,OE=OF仍然成立.證明如下:延長EO交CF于點G.∵,∴ AE//CF,∴.又∵點O為AC的中點,∴ AO=CO.在和中,∴,∴ OG=OE,∴中,∴ OE=OF;(3)CF=OE+AE或CF=OEAE.證明如下:①如圖2,當(dāng)點P在線段OA上時.∵,∴,由(2)可得:OF=OG,∴是等邊三角形,∴ FG=OF=OE,由(2)可得:,∴ CG=AE.又∵ CF=GF+CG,∴ CF=OE+AE;②如圖3,當(dāng)點P在線段OA延長線上時.∵,∴,同理可得:是等邊三角形,∴ FG=OF=OE,同理可得:,∴ CG=AE.又∵ CF=GFCG,∴ CF=OEAE.【點睛】本題屬于四邊形綜合題,主要考查了矩形的性質(zhì)、全等三角形
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1