freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)知識(shí)點(diǎn)過關(guān)培優(yōu)-易錯(cuò)-難題訓(xùn)練∶平行四邊形(參考版)

2025-03-30 22:26本頁面
  

【正文】 在△EPG與△CEB中,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)?x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴當(dāng)x=時(shí),S的值最大,最大值為,.考點(diǎn):四邊形綜合題15.(本題滿分10分)如圖1,已知矩形紙片ABCD中,AB=6cm,若將該紙片沿著過點(diǎn)B的直線折疊(折痕為BM),點(diǎn)A恰好落在CD邊的中點(diǎn)P處.(1)求矩形ABCD的邊AD的長.(2)若P為CD邊上的一個(gè)動(dòng)點(diǎn),折疊紙片,使得A與P重合,折痕為MN,其中M在邊AD上,N在邊BC上,如圖2所示.設(shè)DP=x cm,DM=y(tǒng) cm,試求y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍.(3)①當(dāng)折痕MN的端點(diǎn)N在AB上時(shí),求當(dāng)△PCN為等腰三角形時(shí)x的值;②當(dāng)折痕MN的端點(diǎn)M在CD上時(shí),設(shè)折疊后重疊部分的面積為S,試求S與x之間的函數(shù)關(guān)系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】試題分析:(1)根據(jù)折疊圖形的性質(zhì)和勾股定理求出AD的長度;(2)根據(jù)折疊圖形的性質(zhì)以及Rt△MPD的勾股定理求出函數(shù)關(guān)系式;(3)過點(diǎn)N作NQ⊥CD,根據(jù)Rt△NPQ的勾股定理進(jìn)行求解;(4)根據(jù)Rt△ADM的勾股定理求出MP與x的函數(shù)關(guān)系式,然后得出函數(shù)關(guān)系式.試題解析:(1)根據(jù)折疊可得BP=AB=6cm CP=3cm 根據(jù)Rt△PBC的勾股定理可得:AD=3.(2)由折疊可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)當(dāng)點(diǎn)N在AB上,x≥3, ∴PC≤3,而PN≥3,NC≥3.∴△PCN為等腰三角形,只可能NC=NP.過N點(diǎn)作NQ⊥CD,垂足為Q,在Rt△NPQ中,∴解得x=.(4)當(dāng)點(diǎn)M在CD上時(shí),N在AB上,可得四邊形ANPM為菱形.設(shè)MP=y(tǒng),在Rt△ADM中,即∴ y=.∴ S=考點(diǎn):函數(shù)的性質(zhì)、勾股定理.。使點(diǎn)C落在點(diǎn)P處,連接AP,設(shè)△APE的面積為S,試求S與x的函數(shù)關(guān)系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),當(dāng)x=時(shí),S的值最大,最大值為,.【解析】試題分析:(1)過O作OM∥AB交CE于點(diǎn)M,如圖1,由平行線等分線段定理得到CM=ME,根據(jù)三角形的中位線定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到結(jié)果;(2)過P作PG⊥AB交AB的延長線于G,如圖2,根據(jù)已知條件得到∠ECB=∠PEG,根據(jù)全等三角形的性質(zhì)得到EB=PG=x,由三角形的面積公式得到S=(1﹣x)?x,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.試題解析:(1)過O作OM∥AB交CE于點(diǎn)M,如圖1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)過P作PG⊥AB交AB的延長線于G,如圖2,∵∠CEP=∠EBC=90176。DE==,當(dāng)DE與DA重合時(shí),a=,∴<a<;③如圖∵△DEF是等邊三角形∴∠FDC=30176。設(shè)NJ=x,則IQ=QN=2x,QJ=x,∵IJ=6cm,∴2x+x=6,∴x=126,即NJ=126(cm).(3)分三種情況:①如圖:設(shè)等邊三角形的邊長為b,則0<b≤6,則tan60176。由QI=QN知∠JIN=∠QNI=15176。、∠MIN=60176。設(shè)NJ=x,則IQ=QN=2x、QJ=x,根據(jù)IJ=IQ+QJ求出x即可得;(3)由等邊三角形的性質(zhì)、直角三角形的性質(zhì)、勾股定理進(jìn)行計(jì)算,畫出圖形即可.(1)證明:∵①對(duì)折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF∴PB=PC∵沿折痕BG折疊紙片,使點(diǎn)C落在EF上的點(diǎn)P處∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)證明:①如圖∵矩形AHIJ∴∠H=∠J=90176。∴∠ACP=∠DCQ.∴,△APC≌△DQC(AAS),∴AP=DQ.又∵S△ABC=BC?AP,S△DFC=FC?DQ,∴S△ABC=S△DFC;(3)解:根據(jù)(2)得圖中陰影部分的面積和是△ABC的面積三倍,若圖中陰影部分的面積和有最大值,則三角形ABC的面積最大,∴當(dāng)△ABC是直角三角形,即∠C是90度時(shí),陰影部分的面積和最大.∴S陰影部分面積和=3S△ABC=334=18.考點(diǎn):四邊形綜合題13.小明在矩形紙片上畫正三角形,他的做法是:①對(duì)折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF,把紙片展平;②沿折痕BG折疊紙片,使點(diǎn)C落在EF上的點(diǎn)P處,再折出PB、PC,最后用筆畫出△PBC(圖1).(1)求證:圖1中的 PBC是正三角形: (2)如圖2,小明在矩形紙片HIJK上又畫了一個(gè)正三角形IMN,其中IJ=6cm,且HM=JN.①求證:IH=IJ②請(qǐng)求出NJ的長; (3)小明發(fā)現(xiàn):在矩形紙片中,若一邊長為6cm,當(dāng)另一邊的長度a變化時(shí),在矩形紙片上總能畫出最大的正三角形,但位置會(huì)有所不同.請(qǐng)根據(jù)小明的發(fā)現(xiàn),畫出不同情形的示意圖(作圖工具不限,能說明問題即可),并直接寫出對(duì)應(yīng)的a的取值范圍.【答案】(1)證明見解析;(2)①證明見解析;②126(3)3<a<4,a>4【解析】分析:(1)由折疊的性質(zhì)和垂直平分線的性質(zhì)得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”證Rt△IHM≌Rt△IJN即可得;②IJ上取一點(diǎn)Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15176。.∵四邊形ACDE,BCFG均為正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90176。時(shí),圖中陰影部分的面積和有最大值是________.【答案】(1)證明見解析;(2)成立
點(diǎn)擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1