freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)二次函數(shù)的綜合題試題附答案(參考版)

2025-03-30 22:25本頁面
  

【正文】 ?!?。②k取任何值時,設(shè)點A(x1,x12﹣1),B(x2,x22﹣1),則。∴AO=AM。∵直線l過點E(0,﹣2)且平行于x軸,∴點M的縱坐標(biāo)為﹣2?!鄴佄锞€的解析式為y=x2﹣1。(3)①k=0時,求出AM、BN的長,然后代入計算即可得解;②設(shè)點A(x1,x12﹣1),B(x2,x22﹣1),然后表示出,再聯(lián)立拋物線與直線解析式,消掉未知數(shù)y得到關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系表示出x1+x2,x1?2,并求出x12+x22,x12?x22,然后代入進(jìn)行計算即可得解。11.如圖1,拋物線經(jīng)過點、兩點,是其頂點,將拋物線繞點旋轉(zhuǎn),得到新的拋物線.(1)求拋物線的函數(shù)解析式及頂點的坐標(biāo);(2)如圖2,直線經(jīng)過點,是拋物線上的一點,設(shè)點的橫坐標(biāo)為(),連接并延長,交拋物線于點,交直線l于點,求的值;(3)如圖3,在(2)的條件下,連接、在直線下方的拋物線上是否存在點,使得?若存在,求出點的橫坐標(biāo);若不存在,請說明理由.【答案】(1),頂點為:;(2)的值為﹣3;(3)存在,點的橫坐標(biāo)為:或.【解析】【分析】(1)運用待定系數(shù)法將、代入中,即可求得和的值和拋物線解析式,再利用配方法將拋物線解析式化為頂點式即可求得頂點的坐標(biāo);(2)根據(jù)拋物線繞點旋轉(zhuǎn),可求得新拋物線的解析式,再將代入中,即可求得直線解析式,根據(jù)對稱性可得點坐標(biāo),過點作軸交直線于,過作軸交直線于,由,即可得,再證明∽,即可得,建立方程求解即可;(3)連接,易證是,可得,在軸下方過點作,在上截取,過點作軸于,連接交拋物線于點,點即為所求的點;通過建立方程組求解即可.【詳解】(1)將、代入中,得解得∴拋物線解析式為:,配方,得:,∴頂點為:;(2)∵拋物線繞點旋轉(zhuǎn),得到新的拋物線.∴新拋物線的頂點為:,二次項系數(shù)為:∴新拋物線的解析式為:將代入中,得,解得,∴直線解析式為,∵,∴直線的解析式為,由拋物線與拋物線關(guān)于原點對稱,可得點、V關(guān)于原點對稱,∴如圖2,過點作軸交直線于,過作軸交直線于,則,∴,∵∴,∵軸,軸∴∴∽∴,即∴解得:,∵∴的值為:﹣3;(3)由(2)知:,∴,如圖3,連接,在中,∵,∴∴是直角三角形,∴,∵∴,在軸下方過點作,在上截取,過點作軸于,連接交拋物線于點,點即為所求的點;∵,∴∵∴∴,設(shè)直線解析式為,則,解得∴直線解析式為,解方程組,得,∴點的橫坐標(biāo)為:或.【點睛】本題考查了二次函數(shù)圖象和性質(zhì),待定系數(shù)法求函數(shù)解析式,旋轉(zhuǎn)變換,相似三角形判定和性質(zhì),直線與拋物線交點,解直角三角形等知識點;屬于中考壓軸題型,綜合性強(qiáng),難度較大.12.如圖,某足球運動員站在點O處練習(xí)射門,(點A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,.(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系x=10t,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?【答案】(1)足球飛行的時間是s時,足球離地面最高,;(2)能.【解析】試題分析:(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(0,)(,),于是得到,求得拋物線的解析式為:y=﹣t2+5t+,當(dāng)t=時,y最大=;(2)把x=28代入x=10t得t=,當(dāng)t=,y=﹣+5+=<,于是得到他能將球直接射入球門.解:(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(0,)(,),∴,解得:,∴拋物線的解析式為:y=﹣t2+5t+,∴當(dāng)t=時,y最大=;(2)把x=28代入x=10t得t=,∴當(dāng)t=,y=﹣+5+=<,∴他能將球直接射入球門.考點:二次函數(shù)的應(yīng)用.13.在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+x+c的圖象經(jīng)過點C(0,2)和點D(4,﹣2).點E是直線y=﹣x+2與二次函數(shù)圖象在第一象限內(nèi)的交點.(1)求二次函數(shù)的解析式及點E的坐標(biāo).(2)如圖①,若點M是二次函數(shù)圖象上的點,且在直線CE的上方,連接MC,OE,ME.求四邊形COEM面積的最大值及此時點M的坐標(biāo).(3)如圖②,經(jīng)過A、B、C三點的圓交y軸于點F,求點F的坐標(biāo).【答案】(1)E(3,1);(2)S最大=,M坐標(biāo)為(,3);(3)F坐標(biāo)為(0,﹣).【解析】【分析】1)把C與D坐標(biāo)代入二次函數(shù)解析式求出a與c的值,確定出二次函數(shù)解析式,與一次函數(shù)解析式聯(lián)立求出E坐標(biāo)即可;(2)過M作MH垂直于x軸,與直線CE交于點H,四邊形COEM面積最大即為三角形CME面積最大,構(gòu)造出二次函數(shù)求出最大值,并求出此時M坐標(biāo)即可;(3)令y=0,求出x的值,得出A與B坐標(biāo),由圓周角定理及相似的性質(zhì)得到三角形AOC與三角形BOF相似,由相似得比例求出OF的長,即可確定出F坐標(biāo).【詳解】(1)把C(0,2),D(4,﹣2)代入二次函數(shù)解析式得: ,解得: ,即二次函數(shù)解析式為y=﹣x2+x+2,聯(lián)立一次函數(shù)解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,則E(3,1);(2)如圖①,過M作MH∥y軸,交CE于點H,設(shè)M(m,﹣m2+m+2),則H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四邊形COEM=S△OCE+S△CME=23+MH?3=﹣m2+3m+3,當(dāng)m=﹣=時,S最大=,此時M坐標(biāo)為(,3);(3)連接BF,如圖②所示,當(dāng)﹣x2+x+20=0時,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴ ,即 ,解得:OF=,則F坐標(biāo)為(0,﹣).【點睛】此題屬于二次函數(shù)綜合題,涉及的知識有:待定系數(shù)法求二次函數(shù)解析式,相似三角形的判定與性質(zhì),三角形的面積,二次函數(shù)圖象與性質(zhì),以及圖形與坐標(biāo)性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.14.如圖,△ABC的頂點坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應(yīng)點為D,拋物線y=ax2﹣10ax+c經(jīng)過點C,頂點M在直線BC上.(1)證明四邊形ABCD是菱形,并求點D的坐標(biāo);(2)求拋物線的對稱軸和函數(shù)表達(dá)式;(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.【答案】(1)詳見解析(2)(3)詳見解析【解析】
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1