freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學專題訓練---二次函數(shù)的綜合題分類及答案(參考版)

2025-03-30 22:25本頁面
  

【正文】 ∵∠OPB+∠OBP=90176。就可以構(gòu)成∠OBP=∠FPG,如圖2,求出圓E與y軸有一個交點時的m值,則可得取值范圍;②當B在原點的右側(cè)時,只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形時滿足條件,直接計算即可.試題解析:(1)當m=﹣3時,B(﹣3,0),把A(1,0),B(﹣3,0)代入到拋物線y=x2+bx+c中得:,解得,∴拋物線的解析式為:y=x2+2x﹣3=(x+1)2﹣4;對稱軸是:直線x=﹣1;(2)如圖1,設E(m,m2+2m﹣3),由題意得:AD=1+1=2,OC=3,S△ACE=S△ACD=ADOC=23=10,設直線AE的解析式為:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,解得:,∴直線AE的解析式為:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)如圖2,當B在原點的左側(cè)時,連接BF,以BF為直徑作圓E,當⊙E與y軸相切時,設切點為P,∴∠BPF=90176。及∠ANM=90176?!唷螼CQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQ?AQ=CO?AB,設OQ=m,則AQ=10﹣m,∴m(10﹣m)=44,解得m=2或m=8,①當m=2時,CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC?sin∠PCQ=t,PN=PB?sin∠CBQ=(10﹣t),∴t =(10﹣t),解得t=,②當m=8時,同理可求得t=,∴當四邊形PMQN為正方形時,t的值為或.點睛:本題為二次函數(shù)的綜合應用,涉及矩形的性質(zhì)、待定系數(shù)法、相似三角形的判定和性質(zhì)、勾股定理、解直角三角形、方程思想等知識.在(1)中注意利用矩形的性質(zhì)求得B點坐標是解題的關鍵,在(2)中證得△PBE∽△OCD是解題的關鍵,在(3)中利用Rt△COQ∽Rt△QAB求得CQ的長是解題的關鍵.本題考查知識點較多,綜合性較強,難度較大.14.如圖,已知二次函數(shù)y=ax2+bx+3 的圖象與x軸分別交于A(1,0),B(3,0)兩點,與y軸交于點C(1)求此二次函數(shù)解析式;(2)點D為拋物線的頂點,試判斷△BCD的形狀,并說明理由;(3)將直線BC向上平移t(t0)個單位,平移后的直線與拋物線交于M,N兩點(點M在y軸的右側(cè)),當△AMN為直角三角形時,求t的值.【答案】(1);(2)△BCD為直角三角形,理由見解析;(3)當△AMN為直角三角形時,t的值為1或4.【解析】【分析】(1)根據(jù)點A、B的坐標,利用待定系數(shù)法即可求出二次函數(shù)解析式;(2)利用配方法及二次函數(shù)圖象上點的坐標特征,可求出點C、D的坐標,利用兩點間的距離公式可求出CD、BD、BC的長,由勾股定理的逆定理可證出△BCD為直角三角形;(3)根據(jù)點B、C的坐標,利用待定系數(shù)法可求出直線BC的解析式,進而可找出平移后直線的解析式,聯(lián)立兩函數(shù)解析式成方程組,通過解方程組可找出點M、N的坐標,利用兩點間的距離公式可求出AMANMN2的值,分別令三個角為直角,利用勾股定理可得出關于t的無理方程,解之即可得出結(jié)論.【詳解】(1)將、代入,得:,解得:,此二次函數(shù)解析式為.(2)為直角三角形,理由如下:,頂點的坐標為.當時,點的坐標為.點的坐標為,,.,為直角三角形.(3)設直線的解析式為,將,代入,得:,解得:,直線的解析式為,將直線向上平移個單位得到的直線的解析式為.聯(lián)立新直線與拋物線的解析式成方程組,得:,解得:,點的坐標為,點的坐標為,.點的坐標為,.為直角三角形,分三種情況考慮:①當時,有,即,整理,得:,解得:,(不合題意,舍去);②當時,有,即,整理,得:,解得:,(不合題意,舍去);③當時,有,即,整理,得:.,該方程無解(或解均為增解).綜上所述:當為直角三角形時,的值為1或4.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、待定系數(shù)法求一次函數(shù)解析式、二次函數(shù)圖象上點的坐標特征、勾股定理以及勾股定理的逆定理,解題的關鍵是:(1)根據(jù)點的坐標,利用待定系數(shù)法求出二次函數(shù)解析式;(2)利用兩點間的距離公式結(jié)合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90176。PM=PN,∴∠CQO+∠AQB=90176。AO=3,BO=2,Q(t,3),P(t,),①當2<t≤6時,AQ=t,PQ=,若:△AOB∽△AQP,則:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,則:,即:,∴t=0(舍)或t=2(舍),②當t>6時,AQ′=t,PQ′=,若:△AOB∽△AQP,則:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,則:,即:,∴t=0(舍)或t=14,∴t=或t=或t=14.考點:二次函數(shù)綜合題.13.如圖,矩形OABC的兩邊在坐標軸上,點A的坐標為(10,0),拋物線y=ax2+bx+4過點B,C兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設CP=t(0<t<10).(1)請直接寫出B、C兩點的坐標及拋物線的解析式;(2)過點P作PE⊥BC,交拋物線于點E,連接BE,當t為何值時,∠PBE=∠OCD?(3)點Q是x軸上的動點,過點P作PM∥BQ,交CQ于點M,作PN∥CQ,交BQ于點N,當四邊形PMQN為正方形時,請求出t的值.【答案】(1)B(10,4),C(0,4),;(2)3;(3)或 .【解析】試題分析:(1)由拋物線的解析式可求得C點坐標,由矩形的性質(zhì)可求得B點坐標,由B、D的坐標,利用待定系數(shù)法可求得拋物線解析式;(2)可設P(t,4),則可表示出E點坐標,從而可表示出PB、PE的長,由條件可證得△PBE∽△OCD,利用相似三角形的性質(zhì)可得到關于t的方程,可求得t的值;(3)當四邊形PMQN為正方形時,則可證得△COQ∽△QAB,利用相似三角形的性質(zhì)可求得CQ的長,在Rt△BCQ中可求得BQ、CQ,則可用t分別表示出PM和PN,可得到關于t的方程,可求得t的值.試題解析:解:(1)在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四邊形OABC為矩形,且A(10,0),∴B(10,4),把B、D坐標代入拋物線解析式可得,解得,∴拋物線解析式為y=x2+x+4;(2)由題意可設P(t,4),則E(t,t2+t+4),∴PB=10﹣t,PE=t2+t+4﹣4=t2+t,∵∠BPE=∠COD=90176。時,P(m,0),∵點P在拋物線上,∴,解得:m5=﹣3(舍去),m6=1,此時點P的坐標為(1,0).綜上可知:在拋物線上存在點P,使得△AFP為等腰直角三角形,點P的坐標為(2,﹣5)或(1,0).考點:二次函數(shù)綜合題;最值問題;存在型;分類討論;綜合題.9.在平面直角坐標系中,拋物線過點,與y軸交于點C,連接AC
點擊復制文檔內(nèi)容
數(shù)學相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1