freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)培優(yōu)專題復(fù)習(xí)平行四邊形練習(xí)題含詳細(xì)答案(參考版)

2025-03-30 22:21本頁(yè)面
  

【正文】 AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因?yàn)锳E=nPA,所以PE==CQ=PD=ADAP=.所以AP=.所以=.問(wèn)題2:(1)如圖2,設(shè)對(duì)角線與相交于點(diǎn).所以G是DC的中點(diǎn),作QHBC,交BC的延長(zhǎng)線于H,因?yàn)锳D//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由圖知,當(dāng) AB時(shí),的長(zhǎng)最小,即=CH=4.易得四邊形BPQH為矩形,所以QH=BP=AP.所以.(若學(xué)生有能力從梯形中位線角度考慮,若正確即可評(píng)分.但講評(píng)時(shí)不作要求)(2)PQ的最小值為..考點(diǎn):1.直角三角形的性質(zhì);2.全等三角形的判定與性質(zhì);3.平行四邊形的性質(zhì);4矩形的判定與性質(zhì).。AC=4,BC=3,P為AC邊上的一動(dòng)點(diǎn),以PB,PA為邊構(gòu)造□APBQ,求對(duì)角線PQ的最小值及PQ最小時(shí)的值.(1)在解決這個(gè)問(wèn)題時(shí),小明構(gòu)造出了如圖2的輔助線,則PQ的最小值為 ,當(dāng)PQ最小時(shí)= _____ __;(2)小明對(duì)問(wèn)題1做了簡(jiǎn)單的變式思考.如圖3,P為AB邊上的一動(dòng)點(diǎn),延長(zhǎng)PA到點(diǎn)E,使AE=nPA(n為大于0的常數(shù)).以PE,PC為邊作□PCQE,試求對(duì)角線PQ長(zhǎng)的最小值,并求PQ最小時(shí)的值;問(wèn)題2:在四邊形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如圖4,若為上任意一點(diǎn),以,為邊作□.試求對(duì)角線長(zhǎng)的最小值和PQ最小時(shí)的值.(2)若為上任意一點(diǎn),延長(zhǎng)到,使,再以,為邊作□.請(qǐng)直接寫出對(duì)角線長(zhǎng)的最小值和PQ最小時(shí)的值.【答案】問(wèn)題1:(1)3,;(2)PQ=,=.問(wèn)題2:(1)=4,.(2)PQ的最小值為..【解析】試題分析:?jiǎn)栴}1:(1)首先根據(jù)條件可證四邊形PCBQ是矩形,然后根據(jù)條件“四邊形APBQ是平行四邊形可得AP=QB=PC,從而可求的值.(2)由題可知:當(dāng)QP⊥AC時(shí),PQ最?。^(guò)點(diǎn)C作CD⊥AB于點(diǎn)D.此時(shí)四邊形CDPQ為矩形,PQ=CD,在Rt△ABC中,∠C=90176?!帱c(diǎn)F、D、E′共線,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∴EF=DE′+DF=BE+DF;歸納:在四邊形ABCD中,點(diǎn)E、F分別在BC、CD上,當(dāng)AB=AD,∠B+∠D=180176?!螮AF=∠BAD時(shí),EF=BE+DF成立.理由如下:如圖(3),∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)∠BAD的度數(shù)至△ADE′,如圖(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180176?!唷螮AF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120176?!?=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60176?!喟选鰽BE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120176?!郃B=AD,∠1+∠2=60176。時(shí),EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120176。知F、D、E′共線,因此有EF=DE′+DF=BE+DF;根據(jù)前面的條件和結(jié)論可歸納出結(jié)論.試題解析:(1)當(dāng)∠BAD=120176。至△ADE′,如圖(2),連結(jié)E′F,根據(jù)菱形和旋轉(zhuǎn)的性質(zhì)得到AE=AE′,∠EAF=∠E′AF,利用“SAS”證明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120176。時(shí),還有EF=BE+DF嗎?請(qǐng)說(shuō)明理由.(2)在四邊形ABCD中,點(diǎn)E、F分別在BC、CD上,當(dāng)AB=AD,∠B+∠D=180176。=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.類比猜想:(1)請(qǐng)同學(xué)們研究:如圖(2),在菱形ABCD中,點(diǎn)E、F分別在BC、CD上,當(dāng)∠BAD=120176。45176。∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90176。在△EFM和△BPA中,∴△EFM≌△BPA(AAS). ∴EM=AP.設(shè)AP=x在Rt△APE中,(4BE)2+x2=BE2.解得BE=2+,∴CF=BEEM=2+x,∴BE+CF=x+4=(x2)2+3.當(dāng)x=2時(shí),BE+CF取最小值,∴AP=2.考點(diǎn):幾何變換綜合題.14.倡導(dǎo)研究性學(xué)習(xí)方式,著力教材研究,習(xí)題研究,是學(xué)生跳出題海,提高學(xué)習(xí)能力和創(chuàng)新能力的有效途徑.下面是一案例,請(qǐng)同學(xué)們認(rèn)真閱讀、研究,完成“類比猜想”的問(wèn)題.習(xí)題 如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45176。BH=BH,在△BCH和△BQH中,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周長(zhǎng)為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周長(zhǎng)是定值.(3)解:如圖3,過(guò)F作FM⊥AB,垂足為M,則FM=BC=AB.又∵EF為折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90176?!唷螮PH∠EPB=∠EBC∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)證明:如圖2,過(guò)B作BQ⊥PH,垂足為Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90176。又∵∠BCG=90176。EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴.(3)△GFC的面積不能等于2.說(shuō)明一:∵若S△GFC=2,則12-a=2,∴a=10.此時(shí),在△BEF中,.在△AHE中,∴AH>AD,即點(diǎn)H已經(jīng)不在邊AD上,故不可能有S△GFC=2.說(shuō)明二:△GFC的面積不能等于2.∵點(diǎn)H在AD上,∴菱形邊EH的最大值為,∴BF的最大值為.又∵函數(shù)S△GFC=12-a的值隨著a的增大而減小,∴S△GFC的最小值為.又∵,∴△GFC的面積不能等于2.12.如圖,點(diǎn)E是正方形ABCD的邊AB上一點(diǎn),連結(jié)CE,過(guò)頂點(diǎn)C作CF⊥CE,交AD延長(zhǎng)線于F.求證:BE=DF.【答案】證明見(jiàn)解析.【解析】分析:根據(jù)正方形的性質(zhì),證出BC=CD,∠B=∠CDF,∠BCD=90176?!唷螦HE=∠BEF.又∵∠A=∠B=90176。EH=EF,∴∠AEH+∠BEF=90176。至△ADG,可使AB與AD重合,證出△AFE≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(3)把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,證明△AFE≌△AFG(SAS),則EF=FG,∠C=∠ABF=45176。【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1