【總結(jié)】第一篇:高中數(shù)學(xué)復(fù)習(xí)專題講座關(guān)于不等式證明的常用方法 高考要求 不等式的證明,方法靈活多樣,它可以和很多內(nèi)容結(jié)合高考解答題中,常滲透不等式證明的內(nèi)容,純不等式的證明,歷來是高中數(shù)學(xué)中的一個難點,本...
2024-11-09 12:32
【總結(jié)】導(dǎo)數(shù)一、導(dǎo)數(shù)的概念1.導(dǎo)數(shù)的背景(1)切線的斜率;(2)瞬時速度;(3)邊際成本。如一物體的運動方程是,其中的單位是米,的單位是秒,那么物體在時的瞬時速度為_____(答:5米/秒)如果函數(shù)在開區(qū)間(a,b)內(nèi)可導(dǎo),對于開區(qū)間(a,b)內(nèi)的每一個,都對應(yīng)著一個導(dǎo)數(shù),這樣在開區(qū)間(a,b)內(nèi)構(gòu)成
2024-12-18 04:38
【總結(jié)】高中數(shù)學(xué)函數(shù)專題1.已知在實數(shù)域R上可導(dǎo)的函數(shù)對任意實數(shù)都有若存在實數(shù),使,求證:(1);(2)上是單調(diào)函數(shù)證明:(1)又,(2)即在R上是單調(diào)遞增函數(shù).2.已知拋物線C的方程為為焦點,直線與C交于A、B兩點,P為AB的中點,直線過P、F點。(1)求直線的斜率關(guān)于的解析式,并指出定義域;(2)求函數(shù)的反函數(shù);(3)求與的夾角的取值范圍。(4)解不等
2024-08-14 18:29
【總結(jié)】第二章推理與證明復(fù)習(xí)小結(jié)推理與證明推理證明合情推理演繹推理直接證明數(shù)學(xué)歸納法間接證明比較法類比推理歸納推理分析法綜合法反證法知識結(jié)構(gòu)證為數(shù)為數(shù)證一.綜合法證為數(shù)為數(shù)證
2024-11-12 17:11
【總結(jié)】專題8:導(dǎo)數(shù)(文)經(jīng)典例題剖析考點一:求導(dǎo)公式。例1.是的導(dǎo)函數(shù),則的值是。解析:,所以答案:3考點二:導(dǎo)數(shù)的幾何意義。例2.已知函數(shù)的圖象在點處的切線方程是,則。解析:因為,所以,由切線過點,可得點M的縱坐標(biāo)為,所以,所以答案:3。解析:,點處切線的斜
2025-04-04 05:08
【總結(jié)】高中數(shù)學(xué)競賽專題講座(解析幾何)一、基礎(chǔ)知識1.橢圓的定義,第一定義:平面上到兩個定點的距離之和等于定長(大于兩個定點之間的距離)的點的軌跡,即|PF1|+|PF2|=2a(2a|F1F2|=2c).第二定義:平面上到一個定點的距離與到一條定直線的距離之比為同一個常數(shù)e(0e1)的點的軌跡(其中定點不在定直線上),即(0e1).第
2025-07-26 03:53
【總結(jié)】1.函數(shù)的單調(diào)性(1)利用導(dǎo)數(shù)的符號判斷函數(shù)的增減性注意:在某個區(qū)間內(nèi),f39。(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時f39。(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時就必須寫f39。(x)≥0。(2)求函數(shù)單調(diào)區(qū)間的步驟①確定f(x)的定義域;
2024-12-17 15:20
【總結(jié)】高中數(shù)學(xué)《利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性》教學(xué)實踐與思考一、對教材的認識導(dǎo)數(shù)的方法是今后全面研究微積分的重要方法和基本工具,在其它學(xué)科中同樣具有十分重要的作用:在物理學(xué)、經(jīng)濟學(xué)等其它學(xué)科和生產(chǎn)、生活的各個領(lǐng)域都有廣泛的應(yīng)用。導(dǎo)數(shù)的出現(xiàn)推動了人類事業(yè)向前發(fā)展;因此,在高中數(shù)學(xué)課程中設(shè)置導(dǎo)數(shù)的方法有其獨特的價值和作用。本章新課程中設(shè)置的內(nèi)容與傳統(tǒng)內(nèi)容有很
2025-07-28 16:20
【總結(jié)】高中數(shù)學(xué)復(fù)習(xí)專題講座導(dǎo)數(shù)的運算法則及基本公式應(yīng)用高考要求導(dǎo)數(shù)是中學(xué)限選內(nèi)容中較為重要的知識,本節(jié)內(nèi)容主要是在導(dǎo)數(shù)的定義,常用求等公式四則運算求導(dǎo)法則和復(fù)合函數(shù)求導(dǎo)法則等問題上對考生進行訓(xùn)練與指導(dǎo)重難點歸納1深刻理解導(dǎo)數(shù)的概念,了解用定義求簡單的導(dǎo)數(shù)表示函數(shù)的平均改變量,它是Δx的函數(shù),而f′(x0)表示一個數(shù)值,即f′(x)=,知道導(dǎo)數(shù)的等價形式
2025-01-15 10:11
【總結(jié)】導(dǎo)數(shù)的應(yīng)用1.函數(shù)的單調(diào)性 (1)利用導(dǎo)數(shù)的符號判斷函數(shù)的增減性 注意:在某個區(qū)間內(nèi),f'(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時f'(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時就必須寫f'(x)≥0。(2)求函數(shù)單調(diào)區(qū)間的步驟?、俅_定f(x)的定義域; ②求導(dǎo)數(shù); ③由
2024-08-17 20:22
【總結(jié)】第一篇:高中數(shù)學(xué)幾何證明練習(xí) 1、如圖所示,在RtDABC中,DC=900,點D在AB上,以BD為直徑的圓恰好與AC相切于點E,若 AD=23,AE=6,則EC=_______ 2、如圖,已知圓...
2024-11-16 23:31
【總結(jié)】復(fù)合函數(shù)的導(dǎo)數(shù)復(fù)習(xí)回顧基本初等函數(shù)的求導(dǎo)公式簡記??????????????xxaxxeeaaaxxxxnxxCaxxxxnn1ln1lo.6sincocossi.2'''
2025-07-25 22:48
【總結(jié)】 合理“巧設(shè)”,輕松應(yīng)對函數(shù)與導(dǎo)數(shù)壓軸題 函數(shù)與導(dǎo)數(shù)的交匯問題經(jīng)常出現(xiàn)在壓軸題(包括客觀題和主觀題中的壓軸題)位置.解決這類問題時,往往會遇到某些難以確定的根、交點、,往往無功而返;這時,放棄...
2025-04-03 04:21
【總結(jié)】用心愛心專心演繹推理教學(xué)目標(biāo):(1)知識與能力:了解演繹推理的含義及特點,會將推理寫成三段論的形式(2)過程與方法:了解合情推理和演繹推理的區(qū)別與聯(lián)系(3)情感態(tài)度價值觀:了解演繹推理在數(shù)學(xué)證明中的重要地位和日常生活中的作用,養(yǎng)成言之有理論證有據(jù)的習(xí)慣。教學(xué)重點:演繹推理的含義與三段論推理及合情推理和演繹推理
2024-11-26 23:38
【總結(jié)】函數(shù)與方程(二)一、基礎(chǔ)過關(guān)1.設(shè)函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是不間斷的,且f(a)·f(b)0,取x0=a+b2,若f(a)·f(x0)0,則利用二分法求函數(shù)零點時,零點所在區(qū)間為__________.2.下列圖象與x軸均有交點,其中不能用二分法求函數(shù)零點的是__
2024-12-08 02:38