【總結(jié)】§平面向量的數(shù)量積【學習目標、細解考綱】的意義;體會數(shù)量積與投影的關(guān)系。。,可以處理有關(guān)長度、角度和垂直問題?!局R梳理、雙基再現(xiàn)】ab與的夾角。______向量ab與,我們把______________叫ab與的數(shù)量積。(或________)記作___________即a
2024-12-02 08:37
【總結(jié)】平面向量的坐標運算(二)一、填空題1.已知三點A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點坐標是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
2024-12-05 10:15
【總結(jié)】2.3.2向量的坐標表示(1)【學習目標】1、能正確的用坐標來表示向量;2、能區(qū)分向量的坐標與點的坐標的不同;3、掌握平面向量的直角坐標運算4、提高分析問題的能力?!绢A習指導】1、一般地,對于向量a,當它的起點移至_______時,其終點的坐標),(yx稱為向量a的(直角)
2024-11-20 01:05
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學空間向量的數(shù)量積課后知能檢測蘇教版選修2-1一、填空題1.下列結(jié)論中正確的序號是________.①a·b=a·c(a≠0)?b=c;②a·b=0?a=0或b=0;③(a·b)·c=a
2024-12-04 20:01
【總結(jié)】課題:向量的數(shù)乘(2)班級:姓名:學號:第學習小組【學習目標】1、理解兩個向量共線的含義,并掌握向量共線定理;2、能運用實數(shù)與向量的積解決有關(guān)問題?!菊n前預習】1、填空:(1)?||a??;(2)當0??時,a??與a?方向
2024-12-05 03:24
【總結(jié)】"【志鴻全優(yōu)設計】2021-2021學年高中數(shù)學向量的數(shù)量積課后訓練北師大版必修4"1.已知a,b,c是非零向量,下列說法正確的是().A.若|a·b|=|a||b|,則a∥bB.若a·c=b·c,則a=bC.若|a|=|b|,則|a·c|=|b&
2024-11-30 23:41
【總結(jié)】第1章三角函數(shù)任意角、弧度任意角一、填空題1.與405°角終邊相同的角是________.2.若α=45°+k2180°(k∈Z),則α的終邊在第________象限.3.若α是第四象限角,則180°-α是第________象限角.
【總結(jié)】弧度制一、填空題1.-300°化為弧度是________.2.已知2弧度的圓心角所對的弦長為2,那么這個圓心角所對的弧長是________.3.若扇形圓心角為216°,弧長為30π,則扇形半徑為________.4.若2πα4π,且角α的終邊與-7π6角的終邊垂直,則α=
2024-12-05 10:17
【總結(jié)】2020/12/25平面向量數(shù)量積運算律2020/12/25規(guī)定:零向量與任意向量的數(shù)量積為0,即0.??0a1OBba向量叫做向量在向量上的正射影已知兩個非零向量a和b,它們的夾角為?,我們把數(shù)量
2024-11-18 12:10
【總結(jié)】§向量的數(shù)量積一.問題情境:情境1:前面我們學習了平面向量的加法、減法和數(shù)乘三種運算,那么向量與向量能否“相乘”呢??cos||||sFW???其中力和位移是向量,是與的夾角,而功W是數(shù)量.?F?s?s?F?情境2:一個物體在力F的作用下發(fā)生了
2024-11-18 07:35
【總結(jié)】向量數(shù)量積的運算律復習回顧正射影的數(shù)量cosla??(內(nèi)積)cos,??ababa·b=:(1).a?b?a?b=0(2).a?a=|a|2或aaa??||(3).cos?=||||baba?范圍0≤〈a,b〉≤π;平面
【總結(jié)】向量數(shù)量積的物理背景與定義復習回顧x1+x2y1+y2x1-x2y1-y2λx1λy11、若向量a=(x1,y1),b=(x2,y2)則向量a+b=(,)
2024-11-17 17:33
【總結(jié)】任意角的三角函數(shù)任意角的三角函數(shù)(一)一、填空題1.當α為第二象限角時,|sinα|sinα-cosα|cosα|的值是________.2.角α的終邊經(jīng)過點P(-b,4)且cosα=-35,則b的值為________.3.已知sinθ2tanθ0,則角θ位于第___
2024-12-05 03:25
【總結(jié)】§平面向量的數(shù)量積【學習目標、細解考綱】;體會數(shù)量積與投影的關(guān)系。。,可以處理有關(guān)長度、角度和垂直問題。【知識梳理、雙基再現(xiàn)】ab與的夾角。______向量ab與,我們把______________叫ab與的數(shù)量積。(或________)記作___________即ab?=___
2024-12-02 10:24
【總結(jié)】三角函數(shù)的誘導公式(一)一、填空題1.sin585°的值為________.2.若n為整數(shù),則代數(shù)式nπ+αnπ+α的化簡結(jié)果是________.3.若cos(π+α)=-12,32πα2π,則sin(2π+α)=________.4.化簡:-α+α-π-