【總結】(一)教學要求:了解共線或平行向量的概念,掌握表示方法;理解共線向量定理及其推論;掌握空間直線的向量參數(shù)方程;會運用上述知識解決立體幾何中有關的簡單問題.教學重點:空間直線、平面的向量參數(shù)方程及線段中點的向量公式.教學過程:一、復習引入1.回顧平面向量向量知識:平行向量或共線向量?怎樣判定向量與非零向量是否共線?方向相同或者相反的非零向量叫做平行向量.由于任何一組平行向
2025-06-07 23:19
【總結】章末歸納總結1.空間向量的概念及其運算與平面向量類似,向量加、減法的平行四邊形法則,三角形法則以及相關的運算律仍然成立.空間向量的數(shù)量積運算、共線向量定理、共面向量定理都是平面向量在空間中的推廣,空間向量基本定理則是向量由二維到三維的推廣.2.a(chǎn)·b=0?a⊥b是數(shù)形結合的紐帶之一,這是運用空間向量研究線線、線面、面面垂直的關鍵,通??梢耘c
2024-11-17 19:50
【總結】ZPZ空間“距離”問題一、復習引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;(3)把向量的運算結果“翻譯”成相應的幾何意義。(化為向量
2024-11-18 12:14
【總結】第二章§1理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二隨著網(wǎng)絡的普及,電子郵件以其方便、快捷、易于保存、全球暢通無阻特點被廣泛應用,使人們的交流方式得到了極大的改變,深受人們的喜愛.問題1:小明同學想給小剛同學發(fā)電子郵件,你如何用直觀、清
2024-11-18 08:08
【總結】第三章檢測題A時間120分鐘,滿分150分。一、選擇題(本大題共10個小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.已知雙曲線x2a2-y25=1的右焦點為(3,0),則該雙曲線的離心率等于()A.31414B.324C.3
2024-12-03 00:16
【總結】1北師大版高中數(shù)學選修2-1第二章空間向量與立體幾何法門高中姚連省制作2平面向量的加法、減法與數(shù)乘運算向量加法的三角形法則ab向量加法的平行四邊形法則ba向量減法的三角形法則aba(k0)ka(k0)k向量的數(shù)乘a3推廣:
2024-11-18 00:48
【總結】1空間向量運算的坐標表示北師大版高中數(shù)學選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2一、向量的直角坐標運算則設),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???a
2024-11-17 15:04
【總結】第二章§4理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二考點三第一課時已知直線l1,l2的方向向量分別為u1,u2;平面π1,π2的法向量分別為n1,n2.問題1:若直線l1∥l2,直線l1垂直于平面
2024-11-17 23:14
【總結】第一課時:§立體幾何中的向量方法(一)教學要求:向量運算在幾何證明與計算中的應用.掌握利用向量運算解幾何題的方法,并能解簡單的立體幾何問題.教學重點:向量運算在幾何證明與計算中的應用.教學難點:向量運算在幾何證明與計算中的應用教學過程:一、復習引入1.用向量解決立體幾何中的一些典型問題的基本思考方法是:⑴
2024-11-30 04:03
【總結】空間“綜合”問題向量法解立體幾何問題的優(yōu)點:1.思路容易找,甚至可以公式化;一般充分結合圖形發(fā)現(xiàn)向量關系或者求出(找出)平面的法向量、直線的方向向量,利用這些向量借助向量運算就可以解決問題.2.不需要添輔助線和進行困難的幾何證明;3.若坐標系容易建立,更是水到渠成.復習引入如圖,已知:
【總結】ZPZ空間“角度”問題設直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復習引入①方向向量法將二面角轉化為二面角的兩個面的
2024-11-17 12:02
【總結】平面向量空間向量推廣到立體幾何問題(研究的基本對象是點、直線、平面以及由它們組成的空間圖形)向量漸漸成為重要工具從今天開始,我們將進一步來體會向量這一工具在立體幾何中的應用.前面,我們把。+=,使,實數(shù)對共面的充要條件是存在與向量不共線,則向量如果兩個向量byaxp
【總結】第三章質量評估檢測時間:120分鐘滿分:150分一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的.1.若A,B,C,D為空間不同的四點,則下列各式為零向量的是()①AB→+2BC→+2CD→+DC→;②2AB→+
2024-12-03 11:33
【總結】課題:空間向量基本定理學習目標:知識與技能:掌握空間向量基底的概念;了解空間向量的基本定理及其推論;了解空間向量基本定理的證明。過程與方法:培養(yǎng)學生類比、聯(lián)想、維數(shù)轉換的思想方法和空間想象能力。情感態(tài)度與價值觀:創(chuàng)設適當?shù)膯栴}情境,從生活中的常見現(xiàn)象引入課題,引起學生極大的學習興趣,加強數(shù)學與生活實踐的聯(lián)系。學
2024-11-18 18:59
【總結】新課標高二數(shù)學同步測試—(2-1第三章)說明:本試卷分第一卷和第二卷兩部分,第一卷74分,第二卷76分,共150分;答題時間120分鐘.一、選擇題:在每小題給出的四個選項中,只有一項是符合題目要求的,請把正確答案的代號填在題后的括號內(nèi)(每小題5分,共50分).1.在平行六面體ABCD—A1B1C1D1中,M為AC與
2024-11-30 14:39