【總結(jié)】講練學(xué)案部分§空間向量及其加減運算.知識點一空間向量的概念判斷下列命題是否正確,若不正確,請簡述理由.①向量AB與AC是共線向量,則A、B、C、D四點必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2024-12-08 01:49
【總結(jié)】課題:空間向量的標(biāo)準(zhǔn)正交分解與坐標(biāo)表示學(xué)習(xí)目標(biāo):知識與技能:掌握空間直角坐標(biāo)系;及空間向量的坐標(biāo)表示;過程與方法:掌握空間右手直角坐標(biāo)系的概念,會確定一些簡單幾何體(正方體、長方體)的頂點坐標(biāo);情感態(tài)度與價值觀:由平面向量的坐標(biāo)運算體系推廣到空間向量的坐標(biāo)運算體系培養(yǎng)類比推理思想和一般到特殊的辨證思維能力。
2024-12-03 00:16
【總結(jié)】數(shù)量積運算一、兩個向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個向量的數(shù)量積注:①兩個向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2024-11-18 12:14
【總結(jié)】數(shù)乘運算上一節(jié)課,我們把平面向量的有關(guān)概念及加減運算擴展到了空間.平面向量空間向量加法減法運算加法:三角形法則或平行四邊形法則減法:三角形法則運算律加法交換律abba???加法結(jié)合律:()()ab
【總結(jié)】空間向量運算的坐標(biāo)表示【學(xué)習(xí)目標(biāo)】1.掌握空間向量的長度公式、夾角公式、兩點間距離公式、中點坐標(biāo)公式;2.會用這些公式解決有關(guān)問題.【重點難點】空間向量的長度公式、夾角公式、兩點間距離公式、中點坐標(biāo)公式【學(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材P95~P97,找出疑惑之處)復(fù)習(xí)1:設(shè)在平面直角坐標(biāo)系中,A(
2024-11-19 20:38
【總結(jié)】平面向量的正交分解及坐標(biāo)表示一、三角形三條中線共點的證明圖10如圖10所示,已知在△ABC中,D、E、L分別是BC、CA、AB的中點,設(shè)中線AD、BE相交于點P.求證:AD、BE、CL三線共點.分析:欲證三條中線共點,只需證明C、P、L三點共線.解:設(shè)AC=a,AB=b,則AL
2024-11-19 17:32
【總結(jié)】1空間向量運算的坐標(biāo)表示北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2一、向量的直角坐標(biāo)運算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???a
2024-11-17 15:04
【總結(jié)】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運算考查知識點及角度難易度及題號基礎(chǔ)中檔稍難平面向量的坐標(biāo)表示1、2、46平面向量的坐標(biāo)運算3、57、8綜合問題9、10111.若O(0,0),A(1,2),且OA′→=2OA→,則A′點坐標(biāo)為()A.(1,4)
【總結(jié)】§3.空間向量的數(shù)乘運算知識點一空間向量的運算已知ABCD—A′B′C′D′是平行六面體.(1)化簡12'23AABCAB??(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′對角線BC′上的34分點,設(shè)'MNABADAA???
【總結(jié)】空間向量運算的坐標(biāo)表示【學(xué)習(xí)目標(biāo)】⒈掌握空間向量坐標(biāo)運算的規(guī)律;,判斷兩個向量共線或垂直;【自主學(xué)習(xí)】若123(,,)aaaa?,123(,,)bbbb?,則_________??ab,_____________??ab,_____________()??
2024-11-19 23:24
【總結(jié)】,第三章空間向量與立體幾何,3.1空間向量及其運算空間向量的數(shù)量積運算,第一頁,編輯于星期六:點三十八分。,第二頁,編輯于星期六:點三十八分。,自,主,預(yù),習(xí),探,新,知,第三頁,編輯于星期六:點三十...
2024-10-22 19:05
【總結(jié)】數(shù)乘運算(二)一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作//ab:對空間任意兩個向量
【總結(jié)】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運算1.下列說法正確的有()①向量的坐標(biāo)即此向量終點的坐標(biāo).②位置不同的向量其坐標(biāo)可能相同.③一個向量的坐標(biāo)等于它的終點坐標(biāo)減去它的始點坐標(biāo).④相等的向量坐標(biāo)一定相同.A.1個B.2個C.3個D.4個解析:向量的坐標(biāo)是其終點坐標(biāo)減去起點對
【總結(jié)】§3.空間向量的數(shù)量積運算知識點一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
2024-11-20 03:14
【總結(jié)】課題坐標(biāo)的標(biāo)示及運算教學(xué)目標(biāo)知識與技能了解平面向量的正交分解,掌握向量的坐標(biāo)表示.過程與方法掌握兩個向量和、差及數(shù)乘向量的坐標(biāo)運算法則.情感態(tài)度價值觀正確理解向量坐標(biāo)的概念,要把點的坐標(biāo)與向量的坐標(biāo)區(qū)分開來.重點溝通向量“數(shù)”與“形”的特征,使向