【總結(jié)】三角函數(shù)的圖象和性質(zhì)變式1.三角函數(shù)圖像變換將函數(shù)12cos()32yx???的圖像作怎樣的變換可以得到函數(shù)cosyx?的圖像?變式1:將函數(shù)cosyx?的圖像作怎樣的變換可以得到函數(shù)2cos(2)4yx???的圖像?解:(1)先將函數(shù)cosyx?圖象上各點(diǎn)的縱坐標(biāo)擴(kuò)大為原來(lái)的2倍(橫坐標(biāo)不變),即
2024-12-05 06:48
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)正弦函數(shù)、余弦函數(shù)的性質(zhì)(一)課時(shí)跟蹤檢測(cè)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難正、余弦函數(shù)的奇偶性2、57、8正、余弦函數(shù)的周期性1、3、69、10奇偶性與周期性的綜合411121.(2021·陜西高考)函
2024-12-09 03:45
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)正弦函數(shù)、余弦函數(shù)的性質(zhì)(二)課時(shí)跟蹤檢測(cè)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難三角函數(shù)的單調(diào)區(qū)間問題17三角函數(shù)的最值(值域)問題2、510、11比較大小問題39綜合問題4、68121.函數(shù)y=|s
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)正弦函數(shù)、余弦函數(shù)的性質(zhì)(一)學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.函數(shù)y=cos??????x+π2(x∈R)是()A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.無(wú)法確定解析:y=cos??????x+π2=-sinx,所以此函數(shù)為奇函數(shù).答案:A2
【總結(jié)】第一章三角函數(shù)三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的性質(zhì)(一)1.了解周期函數(shù)與最小正周期的意義.(難點(diǎn)、易錯(cuò)點(diǎn))2.了解三角函數(shù)的周期性和奇偶性.(重點(diǎn))3.會(huì)求函數(shù)的周期和判斷三角函數(shù)的奇偶性.(重點(diǎn))1.函數(shù)的周期性(1)對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得當(dāng)
2024-11-19 18:02
【總結(jié)】第一章三角函數(shù)三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的性質(zhì)(二)1.借助圖象理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點(diǎn)等).(重點(diǎn))2.能利用性質(zhì)解決一些簡(jiǎn)單問題.(重點(diǎn)、難點(diǎn))正、余弦函數(shù)的圖象與性質(zhì)函數(shù)y=sinxy=cos
2024-11-19 17:33
【總結(jié)】第一頁(yè),編輯于星期六:點(diǎn)二十七分。,1.4三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象,第二頁(yè),編輯于星期六:點(diǎn)二十七分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)二十七分。,第四頁(yè)...
2024-10-22 18:35
【總結(jié)】正弦函數(shù)、余弦函數(shù)的圖象新課講授圖象的幾何作法???2,0sin??xxy,由于在單位圓中,角x的正弦線表示其正弦值,因此可將正弦線移動(dòng)到直角坐標(biāo)系中確定對(duì)應(yīng)的點(diǎn)(x,sinx),從而作出函數(shù)圖象.PM3?1Oxy1如:作正弦線
2025-06-05 23:39
【總結(jié)】第一篇:、余弦函數(shù)的圖象教案1(人教A必修4) 第一章三角函數(shù) 、余弦函數(shù)的圖象(1) 教學(xué)目的: 知識(shí)目標(biāo):(1)利用單位圓中的三角函數(shù)線作出y=sinx,x?R的圖象,明確圖象的形狀; ...
2024-11-16 00:27
【總結(jié)】二倍角的正弦、余弦、正切公式一、三角變換中的“一致代換”法在三角變換中,“一致代換”法是一種重要的方法,所謂“一致代換”法,即在三角變換中,化“異角”“異名”“異次”為“同角”“同名”“同次”的方法.它主要包括:在三角函數(shù)式中,①如果只含同角三角函數(shù),一般應(yīng)從變化函數(shù)名稱入手,盡量化
2024-12-05 01:55
【總結(jié)】3.二倍角的正弦、余弦和正切公式命題方向1用倍角公式化簡(jiǎn)例1化簡(jiǎn)三角函數(shù)式:2cos8+2-2sin8+1.[分析]將根號(hào)下的式子化為完全平方式,再開出來(lái)運(yùn)算.[解析]原式=4cos24-21+2sin4cos4=2|cos4|-2|sin4+cos4|,∵π43π2,
2024-12-05 06:46
【總結(jié)】1.正切函數(shù)的性質(zhì)與圖象1.理解正切函數(shù)的性質(zhì),掌握正切函數(shù)的圖象的作法.2.能利用正切函數(shù)的圖象與性質(zhì)解決與正切函數(shù)有關(guān)的基本問題.基礎(chǔ)梳理一、正切函數(shù)的性質(zhì)1.正切函數(shù)的定義域和值域:定義域?yàn)??????x???x≠kπ+π2,k∈Z,值域?yàn)镽.2.正切函數(shù)的周期性:y
2024-11-19 17:41
【總結(jié)】三角函數(shù)的誘導(dǎo)公式一、錯(cuò)解點(diǎn)擊是否存在角α,β,α∈(2??,2?),β∈(0,π),使得等式sin(3π-α)=2cos(2?-β),3cos(-α)=-2cos(π+β)同時(shí)成立?若存在,求出α,β的值;若不存在,請(qǐng)說明理由.錯(cuò)解:將已知條件化為???????,cos2
2024-11-19 20:39
【總結(jié)】正弦函數(shù)余弦函數(shù)的圖象和性質(zhì)課件平臺(tái):MicrosoftPowerPoint任課班級(jí):高一(12,13,14,15)任課教師:張志斌我們已學(xué)過哪些做函數(shù)圖象的方法?yx6?3?2?32?65??67?34?23?35?611??2-11Oo?Y=si
2024-11-17 17:56
【總結(jié)】正切函數(shù)的性質(zhì)與圖象考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難正切函數(shù)的性質(zhì)1、411正切函數(shù)性質(zhì)的應(yīng)用2、57、9、10、1213正切函數(shù)的圖象及應(yīng)用3、681.下列說法正確的是()A.正切函數(shù)在整個(gè)定義域內(nèi)是增函數(shù)B.正切函數(shù)在整個(gè)定義域內(nèi)是減函數(shù)C.函數(shù)y