【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一、|a2b|≤|a||b|的應(yīng)用若a=(x1,y1),b=(x2,y2),則平面向量的數(shù)量積的性質(zhì)|a2b|≤|a||b|的坐標(biāo)表示為x1x2+y1y2≤2212122222121)(yyxxyxyx????≤(x12+y12)(x22+y22).不等式(x1x2
2024-12-05 06:47
【總結(jié)】平面向量的基本定理及坐標(biāo)表示平面向量共線的坐標(biāo)表示課標(biāo)點擊平面向量共線的坐標(biāo)表示預(yù)習(xí)導(dǎo)學(xué)典例精析課堂導(dǎo)練課堂小結(jié)1.理解向量共線定理.2.掌握兩個向量平行(共線)的坐標(biāo)表示和會應(yīng)用其求解有關(guān)兩向量
2025-07-25 14:48
【總結(jié)】平面向量基本定理學(xué)習(xí)目標(biāo):1.理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義.2.在平面內(nèi),當(dāng)一組基底選定后,會用這組基底來表示其他向量.3.會應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問題.學(xué)習(xí)重點:會應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問題學(xué)習(xí)難點:會應(yīng)用平面向量基本定理解決有關(guān)平面向量的
2024-11-19 19:36
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運算學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.下列說法正確的有()①向量的坐標(biāo)即此向量終點的坐標(biāo).②位置不同的向量其坐標(biāo)可能相同.③一個向量的坐標(biāo)等于它的終點坐標(biāo)減去它的始點坐標(biāo).④相等的向量坐標(biāo)一定相同.A.1個B.2個
2024-12-09 03:42
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量數(shù)量積的運算1、412與模有關(guān)的問題2、59、10向量的夾角與垂直問題3、67、8、111.設(shè)向量a=(1,0),b=??
2024-12-09 03:41
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.若向量a=(3,m),b=(2,-1),a·b=0,則實數(shù)m的值為()A.-32C.2D.6解析:a·b=3×2+m×(-1)=6-m=0
【總結(jié)】平面向量的基本定理及坐標(biāo)表示習(xí)題課一、選擇題1.如圖,e1,e2為互相垂直的單位向量,向量a+b+c可表示為()A.3e1-2e2B.-3e1-3e2C.3e1+2e2D.2e1+3e2解析:a+b+c=3e1+2e2.答案:C2.已知向量a=(1,-2),|b|=4|a|
2024-11-19 17:33
【總結(jié)】2.1.5向量共線條件與軸上向量坐標(biāo)運算一、學(xué)習(xí)要點:單位向量、軸上向量坐標(biāo)運算、共線定理應(yīng)用二、學(xué)習(xí)過程:(一)復(fù)習(xí)引入:1.向量的表示方法2.向量的加法,減法及運算律3.實數(shù)與向量的乘法(向量數(shù)乘)4.向量共線定理(二)講解新課:1.單位向量給定一個非零向量a,與a同方向且長度等于的單位向量叫
2024-11-18 16:44
【總結(jié)】教學(xué)內(nèi)容:§平面向量的基本定理及坐標(biāo)表示(1)教學(xué)目標(biāo)1.理解平面向量的基本定理,會作出由已知一組基底所表示的向量;2.理解向量夾角及垂直的概念;3.理解向量的正交分解,感受正交分解的實際意義,掌握向量的坐標(biāo)表示。本節(jié)重點平面向量的基本定理,向量的正交分解及坐標(biāo)表示本節(jié)難點平面向量的
2024-11-20 03:14
【總結(jié)】平面幾何中的向量方法學(xué)習(xí)目標(biāo)、垂直、相等、夾角和距離等問題.——向量法和坐標(biāo)法.,體驗向量在解決幾何問題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境問題1:若O為△ABC重心,則=.問題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個四邊形為.
2024-11-19 20:38
【總結(jié)】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù),使得ab
2024-11-18 12:17
【總結(jié)】平面向量的基本定理及坐標(biāo)表示平面向量基本定理平面向量的正交分解及坐標(biāo)表示2020/12/25研修班2問題提出1.向量加法與減法有哪幾種幾何運算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;
【總結(jié)】復(fù)習(xí):共線向量基本定理:向量與向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù)使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點且,用表
2024-11-17 12:03
【總結(jié)】課題平面向量基本定理教學(xué)目標(biāo)知識與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過程與方法在平面內(nèi),當(dāng)一組基底選定后,會用這組基底來表示其他向量情感態(tài)度價值觀啟發(fā)引導(dǎo),講練結(jié)合重點會應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問題難點同上教學(xué)設(shè)
【總結(jié)】平面向量應(yīng)用舉例命題方向1向量在平面幾何中的應(yīng)用例1求證:直徑所對的圓周角為直角.[分析]本題實質(zhì)就是證明AB→2BC→=0.[證明]設(shè)AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09