【總結(jié)】數(shù)系的擴(kuò)充與復(fù)數(shù)的引入第三章復(fù)數(shù)的運(yùn)算第2課時(shí)復(fù)數(shù)的乘法與除法第三章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)在研究復(fù)數(shù)的乘法時(shí),我們注意到復(fù)數(shù)的形式就像一個(gè)二項(xiàng)式,類比二項(xiàng)式乘二項(xiàng)式的法則,我們可以得到復(fù)數(shù)乘法的法則讓第一項(xiàng)與第二項(xiàng)的各項(xiàng)分別相乘,再合并“同類
2024-11-17 20:06
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第1章第1課時(shí)常數(shù)函數(shù)與冪函數(shù)的導(dǎo)數(shù)課時(shí)作業(yè)新人教B版選修2-2一、選擇題1.下列結(jié)論不正確的是()A.若y=3,則y′=0B.若y=1x,則y′=-12xC.若y=x,則y′=12xD.若y=x,則y′=1[
2024-12-03 11:28
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第2章第2課時(shí)演繹推理課時(shí)作業(yè)新人教B版選修2-2一、選擇題1.下面說法正確的個(gè)數(shù)為()①演繹推理是由一般到特殊的推理;②演繹推理得到的結(jié)論一定是正確的;③演繹推理一般模式是“三段論”形式;④演繹推理得到的結(jié)論的正誤與大前提、小前提和推理形式有關(guān).
2024-12-03 11:27
【總結(jié)】導(dǎo)數(shù)及其應(yīng)用第一章導(dǎo)數(shù)的運(yùn)算第3課時(shí)導(dǎo)數(shù)的四則運(yùn)算法則第一章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)其實(shí),導(dǎo)數(shù)和實(shí)數(shù)一樣可以進(jìn)行四則運(yùn)算,我們可以通過導(dǎo)數(shù)的加、減、乘、除來計(jì)算由基本初等函數(shù)通過加減乘除構(gòu)成的函數(shù),這樣我們就避免了使用導(dǎo)數(shù)的定義求復(fù)雜函數(shù)的
2024-11-18 01:21
【總結(jié)】導(dǎo)數(shù)的實(shí)際應(yīng)用【教學(xué)目標(biāo)】利用導(dǎo)數(shù)解決實(shí)際問題中的最優(yōu)化問題,掌握建立數(shù)學(xué)模型的方法,形成求解優(yōu)化問題的思路和方法.【教學(xué)重點(diǎn)】實(shí)際問題中的導(dǎo)數(shù)應(yīng)用【教學(xué)難點(diǎn)】數(shù)學(xué)建模一、課前預(yù)習(xí)::31頁例1、例2,總結(jié)利用導(dǎo)數(shù)解決生活中的優(yōu)化問題的一般步驟:例1有一塊邊長(zhǎng)為a的正方形鐵板,現(xiàn)從鐵板的四個(gè)角各截去一個(gè)相同的小正方
2024-12-03 11:30
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第3章第1課時(shí)復(fù)數(shù)的加法與減法課時(shí)作業(yè)新人教B版選修2-2一、選擇題1.已知z1=3-4i,z2=-5+2i,z1、z2對(duì)應(yīng)的點(diǎn)分別為P1、P2,則P2P1→對(duì)應(yīng)的復(fù)數(shù)為()A.-8+6iB.8-6iC.8+6iD.-2
2024-11-29 12:04
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第2章第2課時(shí)反證法課時(shí)作業(yè)新人教B版選修2-2一、選擇題1.設(shè)a、b、c都是正數(shù),則三個(gè)數(shù)a+1b、b+1c、c+1a()A.都大于2B.至少有一個(gè)大于2C.至少有一個(gè)不小于2D.至少有一個(gè)不大于2[答案]C[解析]
2024-12-03 04:56
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第1章第1課時(shí)函數(shù)的平均變化率課時(shí)作業(yè)新人教B版選修2-2一、選擇題1.在表達(dá)式fx0+Δx-fx0Δx中,Δx的值不可能()A.大于0B.小于0C.等于0D.大于0或小于0[答案]C[解析]Δx可正,可
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第3章第2課時(shí)復(fù)數(shù)的乘法與除法課時(shí)作業(yè)新人教B版選修2-2一、選擇題1.(2021·新課標(biāo)Ⅱ理,2)若a為實(shí)數(shù),且(2+ai)(a-2i)=-4i,則a=()A.-1B.0C.1D.2[答案]B
【總結(jié)】數(shù)系的擴(kuò)充與復(fù)數(shù)的引入第三章1945年,意大利數(shù)學(xué)家、物理學(xué)家卡丹在其所著《重要的藝術(shù)》一書中列出將10分成兩部分,使其積為40的問題,即求方程x(10-x)=40的根,他求出的根為5+-15和5--15,積為25-(-15)=40.但由于這只是單純從形式上推廣而來,并且人們?cè)染鸵?/span>
2024-11-18 15:23
【總結(jié)】§本課時(shí)欄目開關(guān)填一填研一研練一練【學(xué)習(xí)要求】1.了解導(dǎo)數(shù)在解決實(shí)際問題中的作用.2.掌握利用導(dǎo)數(shù)解決簡(jiǎn)單的實(shí)際生活中的優(yōu)化問題.【學(xué)法指導(dǎo)】1.在利用導(dǎo)數(shù)解決實(shí)際問題的過程中體會(huì)建模思想.2.感受導(dǎo)數(shù)知識(shí)在解決實(shí)際問題中的作
2024-11-18 08:07
【總結(jié)】1.2.2函數(shù)的和、差、積、商的導(dǎo)數(shù)【學(xué)習(xí)要求】1.理解函數(shù)的和、差、積、商的求導(dǎo)法則.2.理解求導(dǎo)法則的證明過程,能夠綜合運(yùn)用導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則求函數(shù)的導(dǎo)數(shù).【學(xué)法指導(dǎo)】應(yīng)用導(dǎo)數(shù)的四則運(yùn)算法則和已學(xué)過的常用函數(shù)的導(dǎo)數(shù)公式可迅速解決一類簡(jiǎn)單函數(shù)的求導(dǎo)問題.要透徹理解函數(shù)求導(dǎo)法則的結(jié)構(gòu)內(nèi)涵,注
2024-11-17 23:13
【總結(jié)】1.3.3最大值與最小值【學(xué)習(xí)要求】1.理解函數(shù)最值的概念,了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會(huì)用導(dǎo)數(shù)求某定義域上函數(shù)的最值.【學(xué)法指導(dǎo)】弄清極值與最值的區(qū)別是學(xué)好本節(jié)的關(guān)鍵.函數(shù)的最值是一個(gè)整體性的概念.函數(shù)極值是在局部上對(duì)函數(shù)值的比較,具有相對(duì)性;而函數(shù)的最值則是表示函數(shù)在整個(gè)定義域上的情況,是對(duì)
2024-11-17 23:19
【總結(jié)】1.2.3簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)【學(xué)習(xí)要求】1.了解復(fù)合函數(shù)的概念,掌握復(fù)合函數(shù)的求導(dǎo)法則.2.能夠利用復(fù)合函數(shù)的求導(dǎo)法則,并結(jié)合已經(jīng)學(xué)過的公式、法則進(jìn)行一些復(fù)合函數(shù)的求導(dǎo)(僅限于形如f(ax+b)的導(dǎo)數(shù)).【學(xué)法指導(dǎo)】復(fù)合函數(shù)的求導(dǎo)將復(fù)雜的問題簡(jiǎn)單化,體現(xiàn)了轉(zhuǎn)化思想;學(xué)習(xí)中要通過中間變量的引入理解
【總結(jié)】1.5.3微積分基本定理【學(xué)習(xí)要求】1.直觀了解并掌握微積分基本定理的含義.2.會(huì)利用微積分基本定理求函數(shù)的積分.【學(xué)法指導(dǎo)】通過探究變速直線運(yùn)動(dòng)物體的速度與位移的關(guān)系,直觀了解微積分基本定理的含義.微積分基本定理不僅揭示了導(dǎo)數(shù)和定積分之間的內(nèi)在聯(lián)系,而且還提供了計(jì)算定積分的一種有效方法.本