【總結(jié)】一元二次不等式及其解法(1)一、創(chuàng)設(shè)情景,引入新課.問題:某同學(xué)想上網(wǎng)查資料,現(xiàn)有兩家網(wǎng)吧可供選擇。A網(wǎng)吧每小時(shí)收費(fèi)(不足1小時(shí)的按1小時(shí)計(jì)算);B網(wǎng)吧的收費(fèi)原則為,在用戶上網(wǎng)的第1個(gè)小時(shí)內(nèi)(含恰好1個(gè)小時(shí))收費(fèi),第2個(gè)小時(shí)內(nèi)收費(fèi),以后每小時(shí)減少。(每天上網(wǎng)最多17小時(shí))問:設(shè)該同學(xué)上網(wǎng)時(shí)間為x小時(shí)
2025-07-17 23:26
【總結(jié)】關(guān)于含參數(shù)(單參)的一元二次不等式的解法探究含參數(shù)的一元二次不等式的解法與具體的一元二次不等式的解法在本質(zhì)上是一致的,這類不等式可從分析兩個(gè)根的大小及二次系數(shù)的正負(fù)入手去解答,但遺憾的是這類問題始終成為絕大多數(shù)學(xué)生學(xué)習(xí)的難點(diǎn),此現(xiàn)象出現(xiàn)的根本原因是學(xué)生不清楚該如何對(duì)參數(shù)進(jìn)行討論,筆者認(rèn)為這層“紙”捅破了,問題自然得到了很好的解決,在教學(xué)的過程中本人發(fā)現(xiàn)參數(shù)的討論實(shí)際上就是參數(shù)的分類,而參
2025-04-07 20:32
【總結(jié)】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對(duì)含參一元二次不等式常用的分類方法有三種:一、按項(xiàng)的系數(shù)的符號(hào)分類,即;例1解不等式:分析:本題二次項(xiàng)系數(shù)含有參數(shù),,故只需對(duì)二次項(xiàng)系數(shù)進(jìn)行分類討論。解:∵解得方程兩根∴當(dāng)時(shí),解集為當(dāng)時(shí),不等式為,解集為當(dāng)時(shí),解集為
2025-03-24 23:42
【總結(jié)】一元二次不等式的解法教學(xué)設(shè)計(jì)方案教學(xué)目標(biāo)(1)掌握一元二次不等式的解法;(2)知道一元二次不等式可以轉(zhuǎn)化為一元一次不等式組;(3)了解簡(jiǎn)單的分式不等式的解法;(4)能利用二次函數(shù)與一元二次方程來求解一元二次不等式,理解它們?nèi)咧g的內(nèi)在聯(lián)系;(5)能夠進(jìn)行較簡(jiǎn)單的分類討論,借助于數(shù)軸的直觀,求解簡(jiǎn)單的含字母的一元二次不等式;(6)通過利用二次函數(shù)的圖象來求解一元二次
2025-04-16 12:45
【總結(jié)】 《一元二次不等式的解法》說課稿 ?。? 。 概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,...
2024-12-03 00:43
【總結(jié)】第一篇:含參一元二次不等式的解法(教學(xué)設(shè)計(jì)) 含參一元二次不等式的解法教學(xué)設(shè)計(jì) 一、學(xué)情分析 已經(jīng)學(xué)習(xí)了一元二次不等式的解法,掌握三個(gè)二次之間的關(guān)系,會(huì)解一般的一元二次不等式。對(duì)于含參數(shù)的一元二...
2024-11-04 02:26
【總結(jié)】一元二次不等式的解法授課人:朱平2022年12月9日一元一次函數(shù)一元一次方程一元一次不等式它們之間有怎樣的聯(lián)系?復(fù)習(xí)回顧:a0a0的解
2025-01-07 11:53
【總結(jié)】-不等式的性質(zhì)及一元二次不等式的解法一、不等關(guān)系與不等式1、不等式的定義:用不等號(hào)(“≤”,“≥”,“<”,“>”,“≠”)表示不等關(guān)系的式子。用“<”,“>”連接的不等式叫嚴(yán)格不等式,用“≤”,“≥”連接的不等式叫非嚴(yán)格不等式。2、實(shí)數(shù)的特征和實(shí)數(shù)大小的比較(1)、特征:(1)任意實(shí)數(shù)的平方不小于0:即:∈R,則2≥0;(2)任意兩個(gè)實(shí)數(shù)都可以比較大小。3、實(shí)數(shù)比較
2025-04-16 12:51
【總結(jié)】第一篇:(一元二次不等式的概念和一元二次不等式解法) 或 一元二次不等式及其解法 一元二次不等式的概念和一元二次不等式解法 從容說課 ,第一個(gè)學(xué)時(shí)先由師生共同分析日常生活中的實(shí)際問題來...
2024-10-20 19:24
【總結(jié)】一元二次不等式的解法(第一課時(shí))說課王新剛?cè)私贪嫫胀ǜ咧姓n程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修5說教材內(nèi)容整合內(nèi)容標(biāo)準(zhǔn)說建議說課程序說課標(biāo)教材特點(diǎn)課標(biāo)要求教學(xué)建議評(píng)價(jià)
2024-11-22 01:29
【總結(jié)】第二節(jié)一元二次不等式及其解法基礎(chǔ)梳理1.一元二次不等式的定義只含有個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是的不等式叫做一元二次不等式.一二2.一元二次不等式的解集如下表ax2+bx+c0)的解集ax2+bx+c0(a0)的解集沒有實(shí)數(shù)根有兩相等實(shí)
2024-11-12 01:27
【總結(jié)】課時(shí)作業(yè)16 一元二次不等式及其解法時(shí)間:45分鐘 滿分:100分課堂訓(xùn)練1.不等式x2-5x+6≤0的解集為( )A.[2,3] B.[2,3)C.(2,3) D.(2,3]【答案】 A【解析】 因?yàn)榉匠蘹2-5x+6=0的解為x=2或x=3,所以不等式的解集為{x|2≤x≤3}.2.若a2-a+10,則不等式x2+ax+1>
2025-06-23 20:16
【總結(jié)】含參數(shù)的一元二次不等式解法命題人:徐月玲2016年10月【學(xué)習(xí)目標(biāo)】,并能解決一些實(shí)際問題。經(jīng)歷從實(shí)際情景中抽象出一元二次不等式模型的過程.、方程的聯(lián)系,會(huì)解一元二次不等式。,體會(huì)成功的快樂?!緦W(xué)習(xí)重點(diǎn)】從實(shí)際問題中抽象出一元二次不等式模型,圍繞一元二次不等式的解法展開,突出數(shù)形結(jié)合的思想?!緦W(xué)習(xí)難點(diǎn)】理解二次函數(shù)、一元二次方程與一元二次不等式解集的關(guān)系
2025-06-25 17:04
【總結(jié)】第一篇:一元二次不等式的解法的教學(xué)設(shè)想 “一元二次不等式的解法” (一)教學(xué)設(shè)想 屯留縣教師進(jìn)修校賈海芳 中職教材在提供本課內(nèi)容時(shí),是在實(shí)數(shù)乘法法則基礎(chǔ)上進(jìn)行的,所以在進(jìn)行教學(xué)時(shí)總感覺思維放不...
2024-11-03 22:29
【總結(jié)】第一篇:(一元二次不等式的概念和一元二次不等式解法) 一元二次不等式及其解法 一元二次不等式的概念和一元二次不等式解法 從容說課 ,第一個(gè)學(xué)時(shí)先由師生共同分析日常生活中的實(shí)際問題來引出一...
2024-10-20 16:47