【總結(jié)】初二數(shù)學不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>4;(6)3-x-1;(7)2(x+1)3x;(8)3(x
2025-03-25 07:46
【總結(jié)】不等式和不等式組錢旭東淮安市啟明外國語學校蘇科版義務教育課程標準實驗教科書九年級復習課回顧·知識一元一次不等式(組)的應用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2024-10-12 13:38
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結(jié)】......第三章 章末檢測(B)(時間:120分鐘 滿分:150分)一、選擇題(本大題共12小題,每小題5分,共60分) 1.若a0,-1b0,則有(
2025-06-24 19:20
【總結(jié)】第八講不等式與不等式組一、知識網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點精析考點一:不等式基本性質(zhì)運用1.由x0D.a2,則a的取值范圍是( )A.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【總結(jié)】解不等式方程的方法:(1)設(shè):弄清題意和題目中的數(shù)量關(guān)系,用字母(x、y)表示題目中的未知數(shù);(2)找:找到能夠表示應用題全部含義的一個不等的關(guān)系;(3)列:根據(jù)這個不等的數(shù)量關(guān)系,列出所需的代數(shù)式,從而列出不等式(組);(4)解:解這個所列出的不等式(組),求出未知數(shù)的解集;(5)答:寫出答案,出售時標價為1200元,后來由于商品積壓,商店準備打折出售但要保持利
2024-08-26 07:18
【總結(jié)】指數(shù)不等式、對數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【總結(jié)】......基本不等式習專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”)(4)當且僅當
2025-05-13 23:45
【總結(jié)】不等式與不等式組專題復習(一)不等式考點1:不等式的定義知識點::用符號“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負數(shù),則x<0;③x是非負數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
【總結(jié)】不等式與不等式組綜合檢測題一、選擇題1,若-a>a,則a必為()2,已知a<0,-1<b<0,則a,ab,ab2之間的大小關(guān)系是()>ab>ab2>ab2>a>a>ab2D.ab<a<ab23,(
2024-11-12 02:11
【總結(jié)】4、排序不等式(一)概念【9】:設(shè)有兩組實數(shù)(1)(2)滿足(3)(4)另設(shè)(5)是實數(shù)組(
2025-06-25 22:56
【總結(jié)】第1頁共4頁初中數(shù)學一元一次不等式(組)基礎(chǔ)測試卷一、單選題(共15道,每道6分)的與5的和不大于15,且不小于10,用不等式可以表示為()A.B.C.D.,,則下列關(guān)系一定成立的是()A.B.C.D.
2024-08-20 21:32
【總結(jié)】精品資源不等式與不等式組復習課一、不等式及一元一次不等式概念判斷下列不等式哪些是一元一次不等式,哪些不是?1、2、3、4、5、二、不等式的性質(zhì)(用符號語言來表示)1、若①②③④2、若三、解下列一元一次不等式并將解集在數(shù)軸上表示。①
【總結(jié)】高二數(shù)學競賽班二試講義第一講琴生不等式、冪平均不等式一、知識要點:1.琴生不等式凸函數(shù)的定義:設(shè)連續(xù)函數(shù)的定義域為,對于區(qū)間內(nèi)任意兩點,都有,則稱為上的下凸(凸)函數(shù);反之,若有,則稱為上的上凸(凹)函數(shù)。琴生(Jensen)不等式(1905年提出):若為上的下凸(凸)函數(shù),則(想象邊形的重心在圖象的上方,個點重合時“邊形”的重心在圖
2024-08-13 18:32
【總結(jié)】1新人教版七年級下《不等式》單元測試卷姓名___________班級____________學號______得分____________一、選擇題:本大題共10小題,每小題3分,共30分,在每小題給出的四個選項中,只有一項是符合題目要求的.1.將不等式組13xx???≥≤的解集在數(shù)軸上表示出來,應是
2024-11-22 03:33