【總結(jié)】勾股定理如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2。cabABC∵在Rt△ABC中,∠C=90o,AB=c,AC=b,BC=a,?a2+b2=c2.逆定理如果三角形的三邊長(zhǎng)a、b、c滿足a2+b2=
2024-11-06 13:13
【總結(jié)】圓部分知識(shí)點(diǎn)總結(jié)垂徑定理及其推論垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。(2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧。(3)平分弦所對(duì)的一條弧的直徑垂直平分弦,并且平分弦所對(duì)的另
2025-06-24 05:13
【總結(jié)】北師大版九年級(jí)下冊(cè)第三章《圓》EAODBC問題:左圖中AB為圓O的直徑,CD為圓O的弦。相交于點(diǎn)E,當(dāng)弦CD在圓上運(yùn)動(dòng)的過程中有沒有特殊情況?運(yùn)動(dòng)CD直徑AB和弦CD互相垂直特殊情況在⊙O中,AB為弦,CD為直徑,AB⊥CD提問:你在圓中還能找到那些相等的量?并證明
2024-12-07 15:23
【總結(jié)】1、如圖,在⊙O中,CD是直徑,AB是弦,且CD⊥AB,已知CD=20,CM=4,求AB。2、如圖,AB、CD都是⊙O的弦,且AB∥CD,求證:AC=BD。3、如圖4,在⊙O中,AB為⊙O的弦,C、D是直線AB上兩
2024-11-30 21:07
【總結(jié)】第三章圓《垂徑定理》教學(xué)設(shè)計(jì)一、學(xué)生起點(diǎn)分析學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在七、八年級(jí)已經(jīng)學(xué)習(xí)過軸對(duì)稱圖形的有關(guān)概念和性質(zhì),等腰三角形的對(duì)稱性,以及本節(jié)定理的證明要用到的三角形全等的知識(shí),在本章前兩節(jié)課中也已經(jīng)初步理解了圓的軸對(duì)稱性和圓弧的表示等知識(shí),具備探索證明幾何定理的基本技能.學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在平時(shí)的學(xué)習(xí)中,學(xué)生已掌握探究圖形性質(zhì)的不同手段和方法,具備幾何定理的分析、探索和
2025-04-16 12:24
【總結(jié)】勤學(xué)的人,總是感到時(shí)間過得太快;懶惰的人,卻總是埋怨時(shí)間跑得太慢。
2024-11-25 22:46
【總結(jié)】垂徑定理的應(yīng)用專題試題精選附答案 一.選擇題(共9小題)1.(2015?濰坊)將一盛有不足半杯水的圓柱形玻璃水杯擰緊杯蓋后放倒,水平放置在桌面上,水杯的底面如圖所示,已知水杯內(nèi)徑(圖中小圓的直徑)是8cm,水的最大深度是2cm,則杯底有水部分的面積是( ?。〢.(π﹣4)cm2 B.(π﹣8)cm2 C.(π﹣4)cm2 D.(π﹣2)cm2 2.(2015?
【總結(jié)】九年級(jí)下冊(cè)垂徑定理專題練習(xí)一.選擇題:1.下列命題中錯(cuò)誤的有()①弦的垂直平分線經(jīng)過圓心;②平分弦的直徑垂直于弦;③梯形的對(duì)角線互相平分;④圓的對(duì)稱軸是直徑。A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)2.下面四個(gè)命題中正確的一個(gè)是()A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線
2025-03-25 00:08
【總結(jié)】請(qǐng)觀察下列三個(gè)銀行標(biāo)志有何共同點(diǎn)?圓的對(duì)稱性?圓是軸對(duì)稱圖形嗎?如果是,它的對(duì)稱軸是什么?你能找到多少條對(duì)稱軸?●O你是用什么方法解決上述問題的?圓的對(duì)稱性?圓是軸對(duì)稱圖形.圓的對(duì)稱軸是任意一條經(jīng)過圓心的直線,它有無數(shù)條對(duì)稱軸.●O可利用折疊的方法即可解決上述問題.注意:
2024-12-07 21:27
【總結(jié)】垂徑定理—知識(shí)講解(提高)【學(xué)習(xí)目標(biāo)】1.理解圓的對(duì)稱性;2.掌握垂徑定理及其推論;3.學(xué)會(huì)運(yùn)用垂徑定理及其推論解決有關(guān)的計(jì)算、證明和作圖問題.【要點(diǎn)梳理】知識(shí)點(diǎn)一、垂徑定理 垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧. 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧.
【總結(jié)】第2課時(shí)垂徑定理(2)北師版九年級(jí)下冊(cè)復(fù)習(xí)導(dǎo)入回顧垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧.OMCDAB①CD為直徑②CD⊥AB③AM=BM??ACBC?④??ADBD?⑤可推出由
2025-03-12 13:04
【總結(jié)】北師版九年級(jí)下冊(cè)※3垂徑定理第1課時(shí)垂徑定理(1)新課導(dǎo)入1300多年前,我國(guó)隋朝建造的趙州石拱橋(如圖)的橋拱是圓弧形,它的跨度(弧所對(duì)的弦的長(zhǎng))為,拱高(弧的中點(diǎn)到弦的距離,也叫弓形高)為,求橋拱的半徑(精確到).OMCDAB思考探究如圖,AB是⊙O的一條
2025-03-13 03:53
【總結(jié)】勾股定理習(xí)題課(一)?勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.出了勾股定理的證明?答:三國(guó)時(shí)期的數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作注時(shí)給出的.例,為了求出湖兩岸的A、B兩點(diǎn)之間的距離,一個(gè)觀察者在點(diǎn)C設(shè)樁,使三角形ABC恰好為直角三角形.通過測(cè)量,得到AC長(zhǎng)160米,BC長(zhǎng)128米,問
2024-11-06 17:01
【總結(jié)】培優(yōu)輔導(dǎo),陪你更優(yōu)秀!垂徑定理練習(xí)題典型例題分析:例題、垂徑定理1、在直徑為52cm的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示,如果油的最大深度為16cm,那么油面寬度AB是________cm.2、在直徑為52cm的圓柱形油槽內(nèi)裝入一些油后,,如果油面寬度是48cm,那么油的最大深度為________cm.3、如圖,已知在⊙中,弦,且
【總結(jié)】湘教版九年級(jí)下冊(cè)第二章EAODBC問題:左圖中AB為圓O的直徑,CD為圓O的弦。相交于點(diǎn)E,當(dāng)弦CD在圓上運(yùn)動(dòng)的過程中有沒有特殊情況?運(yùn)動(dòng)CD直徑AB和弦CD互相垂直特殊情況在⊙O中,AB為弦,CD為直徑,AB⊥CD提問:你在圓中還能找到那些相等的量?并證明你猜得的結(jié)論。
2024-12-07 21:28