【總結(jié)】空間幾何體的結(jié)構(gòu)第一課時(shí)空間幾何體及棱柱、棱錐的結(jié)構(gòu)特征任意四邊形平行四邊形矩形菱形正方形梯形等腰梯形直角梯形兩組對(duì)邊平行一組對(duì)邊平行另一組對(duì)邊不平行四邊形的分類及轉(zhuǎn)化對(duì)邊角對(duì)角線對(duì)稱性平行四
2024-12-08 11:28
【總結(jié)】.......空間幾何體的表面積與體積專題一、選擇題1.棱長(zhǎng)為2的正四面體的表面積是( C ).A.B.4C.4D.16解析 每個(gè)面的面積為:
2025-06-23 03:46
【總結(jié)】空間幾何體復(fù)習(xí)資料一、空間幾何體的類型1、多面體:由若干個(gè)平面多邊形圍成的幾何體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。常見的多面體有:棱柱、棱錐、棱臺(tái)2、旋轉(zhuǎn)體:把一個(gè)平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)體的軸。常見的旋轉(zhuǎn)體有:圓柱、圓錐、圓臺(tái)、球3、簡(jiǎn)單組合體的構(gòu)成形
2025-04-17 08:18
【總結(jié)】精品資源普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座8)—空間幾何體一.課標(biāo)要求:1.利用實(shí)物模型、計(jì)算機(jī)軟件觀察大量空間圖形,認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu);2.能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)使用材料(如:
2025-06-29 17:08
【總結(jié)】第一章:空間幾何體第一課時(shí) §、錐、臺(tái)、球的結(jié)構(gòu)特征一、教學(xué)目標(biāo)1.知識(shí)與技能(1)通過實(shí)物操作,課件展示,增強(qiáng)學(xué)生的直觀感知.(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類.(3)會(huì)用語(yǔ)言概述棱柱、棱錐、棱臺(tái)、(圓柱、圓錐、圓臺(tái)、球)的結(jié)構(gòu)特征.(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的
2025-04-17 07:49
【總結(jié)】必修二第一章空間幾何體的結(jié)構(gòu)1.下列幾何體中棱柱有( )A.5個(gè) B.4個(gè)C.3個(gè) D.2個(gè) 2.有兩個(gè)面平行的多面體不可能是( )A.棱柱 B.棱錐C.棱臺(tái) D.以上都錯(cuò)3.一棱柱有10個(gè)頂點(diǎn),且所有側(cè)棱長(zhǎng)之和為100,則其側(cè)棱長(zhǎng)為( )A.10 B.20C.5 D.15
2025-04-04 05:12
【總結(jié)】空間幾何體的結(jié)構(gòu)一、概念只考慮物體的形狀和大小,而不考慮其他因素,由這些物體抽象出來的空間圖形叫做空間幾何體。多面體:一般地,我們把由若干個(gè)平面多邊形圍成的幾何體叫做多面體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。旋轉(zhuǎn)體:我們把由一個(gè)平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)所形成的封閉幾何體叫做旋轉(zhuǎn)體。
2025-06-24 05:45
【總結(jié)】第一章空間幾何體復(fù)習(xí)基礎(chǔ)知識(shí)(一)空間幾何體的結(jié)構(gòu)結(jié)構(gòu)特征結(jié)構(gòu)特征圖例棱柱(1)兩底面相互平行,其余各面都是四邊形;(2)并且每相鄰兩個(gè)四邊形的公共邊都互相平行.圓柱(1)是以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的曲面所圍成的幾何體,圓柱.棱錐(1)底面是多邊形,各側(cè)面均是三角形;(2)各側(cè)面有一個(gè)公共
【總結(jié)】項(xiàng)目組負(fù)責(zé)人劉城?項(xiàng)目類型小論文?班級(jí)高一(21)班?合作者何世.楊政賢.樊珍珍.陳偉.尹震宇.?指導(dǎo)教師—?何敏?項(xiàng)目涉及相關(guān)學(xué)科數(shù)學(xué)?項(xiàng)目所屬學(xué)科數(shù)學(xué)成員分工?何世:整理資料,手稿撰寫?陳偉、楊政賢:收集資料
2025-05-12 12:01
【總結(jié)】空間幾何體的結(jié)構(gòu)第一課時(shí)空間幾何體及棱柱、棱錐的結(jié)構(gòu)特征問題提出,我們認(rèn)識(shí)了三角形,正方形,矩形,菱形,梯形,圓,扇形等平面圖形.那么對(duì)空間中各種各樣的幾何體,我們?nèi)绾握J(rèn)識(shí)它們的結(jié)構(gòu)特征?、大小的幾何體我們?nèi)绾卫斫馑鼈兊穆?lián)系和區(qū)別?知識(shí)探究(一):空間幾何體的類型思考1:在我們周圍存在著各
2024-11-18 01:23
【總結(jié)】空間幾何體的結(jié)構(gòu)(1)如果我們只考慮物體的形狀和大小,而不考慮其它因素,那么由這些物體抽象出來的空間圖形就叫做空間幾何體。一般地,我們把由若干個(gè)平面多邊形圍成的幾何體叫做多面體。(2),(5),(7),(9),(13),(14),(15),(16)這些物體都具有多面體的形狀。
2024-11-24 13:42
【總結(jié)】空間幾何體的結(jié)構(gòu)多面體:一般地,我們把由若干個(gè)平面多邊形圍成的幾何體叫做多面體.旋轉(zhuǎn)體:一般地,我們把由一個(gè)平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)所形成的封閉幾何體叫做旋轉(zhuǎn)體.這條定直線叫做旋轉(zhuǎn)體的軸.1、定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍
2025-05-03 08:37
【總結(jié)】形狀與大小如果我們只考慮物體的形狀和大小,而不考慮其它因素,那么由這些物體抽象出來的空間圖形就叫做空間幾何體??臻g幾何體你能把這些幾何體分成兩類么?多面體:若干個(gè)平面多邊形圍成的幾何體
2025-05-15 08:58
【總結(jié)】立體幾何專題四????121定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體稱為棱柱.特殊棱柱直棱柱:側(cè)棱垂直于底面的棱柱叫做直
2024-11-11 05:49
【總結(jié)】高一數(shù)學(xué)學(xué)案空間幾何體的表面積教學(xué)目的:(1)正棱柱正棱臺(tái)正棱錐的概念,圓柱圓錐圓臺(tái)側(cè)面積(2)用這些公式解決問題教學(xué)重點(diǎn):正棱錐、正棱柱、正棱臺(tái)的理解,柱錐臺(tái)的側(cè)面積計(jì)算教學(xué)難點(diǎn):側(cè)面積公式的應(yīng)用教學(xué)方法:教學(xué)過程:一、什么是多面體?多面體的側(cè)面展開圖二、新授:1、正棱柱:正棱錐:正棱臺(tái):側(cè)面積公式的推導(dǎo),
2024-10-04 16:40