【總結】第七部分、拋物線的切線問題1.(08廣東)設,橢圓方程為=1,拋物線方程為.如圖6所示,過點F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點為,已知拋物線在點的切線經過橢圓的右焦點,(1)求滿足條件的橢圓方程和拋物線方程;(2)設分別是橢圓的左右端點,試探究在拋物線上是否存在點,使為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).
2025-06-07 22:55
【總結】1.直線的傾斜角與斜率:(1)直線的傾斜角:在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向旋轉到和直線重合時所轉的最小正角記為叫做直線的傾斜角.傾斜角,斜率不存在.(2)直線的斜率:.(、).2.直線方程的五種形式:(1)點斜式:(直線過點,且斜率為).注:當直線斜率不存在時,不能用點斜式表示,此時方程為.(2)斜截式:(b
2025-06-22 16:55
【總結】解析幾何中的定點和定值問題【教學目標】學會合理選擇參數(坐標、斜率等)表示動態(tài)圖形中的幾何對象,探究、證明其不變性質(定點、定值等),體會“設而不求”、“整體代換”在簡化運算中的作用.【教學難、重點】解題思路的優(yōu)化.【教學方法】討論式【教學過程】一、基礎練習1、過直線上動點作圓的切線,則兩切點所在直線恒過一定點.此定點的坐標為_________.【答案】【解
2025-06-18 18:55
【總結】解析幾何中的基本公式1、兩點間距離:若,則特別地:軸,則。軸,則。2、平行線間距離:若則:注意點:x,y對應項系數應相等。3、
2025-04-17 12:52
【總結】張啟津張華同學家中有三種酒杯,一種酒杯的軸截面是等腰直角三角形,稱之為直角酒杯(如圖1),另一種酒杯的軸截面近似一條拋物線,杯口寬cm,杯深8cm(如圖2),稱之為拋物線酒杯,還有一種軸截面近似橢圓的橢圓酒杯,測量后得知杯口寬4cm,杯深為9cm,中間最寬處距杯底為5cm(如圖3)。42圖(1)圖(2)
2024-08-25 01:31
【總結】平面解析幾何知識點歸納◆知識點歸納直線與方程1.直線的傾斜角規(guī)定:當直線與軸平行或重合時,它的傾斜角為范圍:直線的傾斜角的取值范圍為:,斜率公式:經過兩點,的直線的斜率公式為3.直線方程的幾種形式名稱方程說明適用條件斜截式是斜率是縱截距與軸不垂直的直線點斜式是直線上的已知點兩點式是直線上的兩個
【總結】“解析幾何”一網打盡(一)直線1.(1)點斜式(直線過點,且斜率為).(2)斜截式(b為直線在y軸上的截距).(3)一般式(其中A、B不同時為0).特別的:(1)已知直線縱截距,常設其方程為或;已知直線橫截距,常設其方程為(直線斜率k存在時,為k的倒數),常設其方程為或(2)直線在坐標軸上的截距可正、可負、也可為0.直線兩截距相等
2025-06-18 20:19
【總結】一、直線與方程基礎:1、直線的傾斜角:αα 2、直線的斜率:;注意:傾斜角為90°的直線的斜率不存在。3、直線方程的五種形式:①點斜式:;②斜截式:;③一般式:;④截距式:;⑤兩點式:注意:各種形式的直線方程所能表示和不能表示的直線。4、兩直線平行與垂直的充要條件:,,;.5、相關公式:
2025-04-17 12:34
【總結】動點問題專題訓練1、如圖,已知中,厘米,厘米,點為的中點.(1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.AQCDBP①若點Q的運動速度與點P的運動速度相等,經過1秒后,與是否全等,請說明理由;②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使與全等?(2)若點Q以②中的運動
2025-06-18 07:06
【總結】......軸對稱中幾何動點最值問題總結 軸對稱的作用是“搬點移線”,可以把圖形中比較分散、缺乏聯(lián)系的元素集中到“新的圖形”中,為應用某些基本定理提供方便。比如我們可以利用軸對稱性質求幾何圖形中一些線段和的最大值或最小值問題。利用軸對稱的
2025-03-26 04:24
【總結】課時目標:1、了解空間動點集合的類型2、探索“動點問題”的解題思路問題一:動點P滿足如下條件時圓橢圓雙曲線拋物線直線球面平面內到定點距離等于定長平面內到兩定點距離之和為定值(大于定點間的距離)平面內到兩定點距離之差的絕對值為定值(小于定點間的距離)
2025-08-05 10:16
【總結】第一部分:直線-1-直線學習內容要點記錄一、斜率與傾斜角(Ⅰ)有關傾斜角1.傾斜角的概念:(1)在平面直角坐標系中,對于一條與x軸相交的直線,把x軸繞著交點按逆時針方向旋轉到與直線
2025-01-09 11:04
【總結】第三章一、直線的傾斜角與斜率1、傾斜角的概念:(1)傾斜角:當直線與x軸相交時,取x軸作為基準,x軸正向與直線向上方向之間所成的角a叫做直線的傾斜角。(2)傾斜角的范圍:當與x軸平行或重合時,規(guī)定它的傾斜角a為0°因此0°≤a<180°。2、直線的斜率(1)斜率公式:K=tana(a≠90°)(2)斜率坐標公式:K
2025-08-05 18:34
【總結】理論與實驗課教案首頁第13次課授課時間2016年12月9日第1~2節(jié)課教案完成時間2016年12月2日課程名稱高等數學教員職稱副教授專業(yè)層次藥學四年制本科年級2016授課方式理論學時2授課題目(章,節(jié))第六章空間解析幾何§§基本教材、主要參考書和相關網站基本教材
2025-07-23 13:45
【總結】精品資源解析幾何中的不等式產生方案解析幾何中有一類題,需要依據題目特點建立不等式,然后才能求解,不等式的產生方法有一定的技術性,最常見的有下列幾種:一、結合定義、圓錐曲線的光學性質,利用圖形中幾何量之間的大小關系(如三角形兩邊之差(和)不大(小)于第三邊)產生不等式.圖1PF2F1yxONM例1:中心在原點,焦
2025-05-04 18:26