【總結(jié)】Runge-Kutta積分方法所以得到:是精確的,中的平均速度。設(shè)是動(dòng)點(diǎn)在其中為:,一般的解法可以表示對(duì)?????????????????????)(!3)(2)()()()(),(),().,(),(32111nnnnnnnnnnnnnnntYhtYhtYhtYhtYtYYttY
2025-05-05 18:22
【總結(jié)】河海大學(xué)理學(xué)院《高等數(shù)學(xué)》高等數(shù)學(xué)(下)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第七章常微分方程高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第四節(jié)高階線性微分方程河海大學(xué)理學(xué)院《高等數(shù)學(xué)》一、概念的引入例:設(shè)有一彈簧下掛一重物,如果使物體具有一個(gè)初始速度00?v,物體
2025-05-07 12:10
【總結(jié)】§常系數(shù)線性微分方程的解法-對(duì)于一般的線性微分方程沒(méi)有普遍的解法基本點(diǎn)v常系數(shù)線性微分方程及可化為這一類型的方程的解法-只須解一個(gè)代數(shù)方程。v某些特殊的非齊次微分方程也可通過(guò)代數(shù)運(yùn)算和微分運(yùn)算求得它的通解。掌握:v特征方程與特征根,及求常系數(shù)線性方程的通解v待定系數(shù)法與拉普拉斯變換法求非齊次線性方程的特解
2025-04-29 01:03
【總結(jié)】第六章微分方程模型一、經(jīng)濟(jì)增長(zhǎng)模型發(fā)展經(jīng)濟(jì)、提高生產(chǎn)力主要有以下手段:增加投資、增加勞動(dòng)力、技術(shù)革新.本節(jié)的模型將首先建立產(chǎn)值與資金、勞動(dòng)力之間的關(guān)系,然后再研究資金與勞動(dòng)力的最佳分配,使投資效益最大,最后討論如何調(diào)節(jié)資金與勞動(dòng)力的增長(zhǎng)率,使勞動(dòng)生產(chǎn)率得到有效的增長(zhǎng).用
2025-08-01 13:24
【總結(jié)】淺淡微分方程模型的重要性劉金英方沛辰呂顯瑞吉林大學(xué)數(shù)學(xué)科學(xué)院長(zhǎng)春摘要?微分方程是一類應(yīng)用十分廣泛而且最常見(jiàn)的數(shù)學(xué)模型,其建模方法在數(shù)學(xué)模型課程的教學(xué)中占有極其重要的地位。本文用實(shí)例從三個(gè)方面進(jìn)行了闡述:?;?;?;?微分方程建模所遵循的一般方法。
2024-10-04 18:31
【總結(jié)】微分方程建模Ⅱ動(dòng)態(tài)模型正規(guī)戰(zhàn)與游擊戰(zhàn)?早在第一次世界大戰(zhàn)期間就提出了幾個(gè)預(yù)測(cè)戰(zhàn)爭(zhēng)結(jié)局的數(shù)學(xué)模型,其中有描述傳統(tǒng)的正規(guī)戰(zhàn)爭(zhēng)的,也有考慮游擊戰(zhàn)爭(zhēng)的,以及雙方分別使用正規(guī)部隊(duì)和游擊部隊(duì)的所謂混合戰(zhàn)爭(zhēng)的。后來(lái)人們對(duì)這些模型作了改進(jìn)用以分析歷史上一些著名的戰(zhàn)爭(zhēng),如二戰(zhàn)中的硫磺島之戰(zhàn)和越南戰(zhàn)爭(zhēng)。預(yù)測(cè)戰(zhàn)爭(zhēng)勝負(fù)應(yīng)該考慮哪些因素?;
2024-08-25 00:58
【總結(jié)】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2024-10-16 21:13
【總結(jié)】《偏微分方程》第3章波動(dòng)方程《偏微分方程》第3章波動(dòng)方程《偏微分方程》第3章波動(dòng)方程分析可得上述初值問(wèn)題的形式解是:稱此式為d’Alembert(達(dá)朗貝爾)公式11(,)[()()]()22xatxatuxtxatxatydya???
2025-02-21 16:13
【總結(jié)】高階微分方程習(xí)題課一、主要內(nèi)容高階方程可降階方程線性方程解的結(jié)構(gòu)二階常系數(shù)線性方程解的結(jié)構(gòu)特征根法特征方程的根及其對(duì)應(yīng)項(xiàng)待定系數(shù)法f(x)的形式及其特解形式微分方程解題思路一階方程高階方程分離變量法全微分方程常數(shù)變易法
【總結(jié)】機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束?第十節(jié)歐拉方程歐拉方程)(1)1(11)(xfypyxpyxpyxnnnnnn?????????)(為常數(shù)kp,tex?令常系數(shù)線性微分方程xtln?即第十二章歐拉方程的算子解法:)(1)1(11)(xfypyxpyxpyxnn
2025-08-05 06:25
【總結(jié)】1常微分方程OrdinaryDifferentialEquations(5)高階常系數(shù)線性微分方程惺恰突訣粹能片扛瞬雒境畝誹率衙荇栽爸檢磷觖錦梅呆布嵋笑賤縶腹鏈雜查再芪濘兄罰裂篷莨盈逞窘胡恭鈀胗蹲躅擔(dān)溽擁絳伊渙蛩鐵麝瑭攥絨匆尾渾呃踺遲窖斗七缽畔諱戌脧挪饑飼硪阿璧趕懂稻夫財(cái)奪惟瘧枇仵孛罌體絞滋廩僅2§4.高階線性微分方程(
2024-10-19 18:02
【總結(jié)】引言回顧?靜力學(xué)研究物體在力系作用下的平衡規(guī)律及力系的簡(jiǎn)化;?運(yùn)動(dòng)學(xué)從幾何觀點(diǎn)研究物體的運(yùn)動(dòng),而不涉及物體所受的力;?動(dòng)力學(xué)研究物體的機(jī)械運(yùn)動(dòng)與作用力之間的關(guān)系。動(dòng)力學(xué)就是從因果關(guān)系上論述物體的機(jī)械運(yùn)動(dòng)。是理論力學(xué)中最具普遍意義的部分,靜力學(xué)、運(yùn)動(dòng)學(xué)則是動(dòng)力學(xué)的特殊情況。低速、宏觀物體的機(jī)械運(yùn)動(dòng)的普遍規(guī)律。
2025-06-16 14:51
【總結(jié)】上頁(yè)下頁(yè)返回結(jié)束2022/3/131第一節(jié)微分方程的基本概念一、問(wèn)題的提出二、微分方程的定義三、主要問(wèn)題—求方程的解四、小結(jié)思考題第五章常微分方程上頁(yè)下頁(yè)返回結(jié)束2022/3/132例1一曲線通過(guò)點(diǎn)(1,2),
2025-02-21 12:49
【總結(jié)】目錄上頁(yè)下頁(yè)返回結(jié)束一階微分方程的習(xí)題課(一)一、一階微分方程求解二、解微分方程應(yīng)用問(wèn)題解法及應(yīng)用第七章目錄上頁(yè)下頁(yè)返回結(jié)束一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階
2024-11-03 16:13
【總結(jié)】例1一曲線通過(guò)點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時(shí)其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問(wèn)題的提出微分方程:凡含有未知函數(shù)的導(dǎo)數(shù)或微分的方程叫
2024-12-08 03:00