【總結(jié)】Chapt4函數(shù)的連續(xù)性數(shù)學分析的研究對象是函數(shù),主要是連續(xù)函數(shù)(在坐標平面上的圖象是一條連綿不斷的曲線)。因此對函數(shù)連續(xù)性的討論是數(shù)學分析的一個重要內(nèi)容??陀^世界的許多現(xiàn)象和事物不僅是運動變化的,而且其運動變化的過程往往是連綿不斷的,這些連綿不斷發(fā)展變化的事物在量的方面的反映就是連續(xù)函數(shù),連續(xù)函數(shù)就是刻畫變量連
2025-08-11 09:15
【總結(jié)】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
2025-08-11 16:42
【總結(jié)】§函數(shù)極限對于函數(shù)y=?(x),考察它的極限,考察自變量x在定義域內(nèi)變化時,相應(yīng)的函數(shù)值的變化趨勢。;x???;x???;x??0;xx??0;xx??0;xx?種極限過程統(tǒng)一表示用記號6Xx?,下定義:如果在極限過程Xx?無限趨于)(xf,時當則稱Xx?,)(
2025-01-20 05:31
【總結(jié)】微積分rxdtdx?微積分微積分第二章極限與連續(xù)?數(shù)列的極限?函數(shù)的極限?變量的極限?無窮大量與無窮小量?極限的運算法則?兩個重要的極限?函數(shù)的連續(xù)性微積分函數(shù)極限微積分.sin時的變化趨勢當觀察函數(shù)??xxx播放1.自變量
2024-10-19 18:07
【總結(jié)】一、函數(shù)的連續(xù)性相稱為函數(shù))(,)()()()(000xfxfxxfxfxfy???????xy0xy00xxx??0)(xfy?x?0xxx??0x?y?y?)(xfy?.,),,(,),()(0000的增量稱為自變量在點內(nèi)有定義在設(shè)函數(shù)xxxxxxxUxfU???
2025-07-26 19:47
【總結(jié)】一、分部積分公式二、小結(jié)思考題第五節(jié)定積分的分部積分法設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導數(shù),則有??ddbbbaaauvuvvu????.定積分的分部積分公式推導??,vuvuuv???????()d,bbaauvxuv?????d
【總結(jié)】一、近似計算二、計算定積分三、微分方程的冪級數(shù)解法四、小結(jié)思考題第五節(jié)函數(shù)的冪級數(shù)展開式的應(yīng)用一、近似計算,21????????naaaA,21naaaA??????.21??????nnnaar誤差兩類問題:,求近似值并估計精度;,確定項數(shù).關(guān)健:通過估計余項,確定精度
2024-08-30 12:44
【總結(jié)】1§函數(shù)的連續(xù)性與間斷點函數(shù)的連續(xù)(continuity)函數(shù)的間斷點小結(jié)思考題作業(yè)(discontinuouspoint)第一章函數(shù)與極限2間變化很小時,生物生長的也很少.在函數(shù)關(guān)系上的反映就是函數(shù)的連續(xù)性.在自然界中,許多事物的變化是連續(xù)的,如氣溫變
2025-01-18 18:55
【總結(jié)】第7章多元函數(shù)微分法及其應(yīng)用主要內(nèi)容本章在一元函數(shù)微分學的基礎(chǔ)上討論多元函數(shù)(以二元函數(shù)為主)的極限、連續(xù)、偏導數(shù)、方向?qū)?shù)、全微分、極值等概念,以及它們的計算方法.關(guān)鍵詞偏導數(shù)(Partialderivatives);全微分(Totald
2025-08-05 03:34
【總結(jié)】改變量,(可正可負)的改變量,(可正可負)的某個鄰域內(nèi)有定義,在點設(shè)函數(shù)0)(xxfy?當自變).()(00xfxfxx變到,相應(yīng)地函數(shù)值從變到量從,x?記為0xxx???即xxx????0,y?記為)()(00xfxxfy??????一、函數(shù)的連續(xù)性1.自變量的改變量和函數(shù)的改變量稱為自變量的
2025-08-05 20:12
【總結(jié)】主要內(nèi)容典型例題第八章多元函數(shù)微分法及其應(yīng)用習題課平面點集和區(qū)域多元函數(shù)的極限多元函數(shù)連續(xù)的概念極限運算多元連續(xù)函數(shù)的性質(zhì)多元函數(shù)概念一、主要內(nèi)容全微分的應(yīng)用高階偏導數(shù)隱函數(shù)求導法則復(fù)合函數(shù)求導法
2024-08-30 12:43
【總結(jié)】一、換元公式二、小結(jié)思考題第四節(jié)定積分的換元法定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導數(shù);(3)當t在區(qū)間],[??上變化時,)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則
【總結(jié)】一、問題的提出二、導數(shù)的定義四、函數(shù)可導性與連續(xù)性的關(guān)系五、小結(jié)思考題三、導數(shù)的幾何意義第一節(jié)導數(shù)概念一、問題的提出0tt?,0時刻的瞬時速度求tt考慮最簡單的變速直線運動--自由落體運動,如圖,,0tt的時刻取一鄰近于,?運動時間ts???v平均速度
2024-08-30 12:41
【總結(jié)】一、高階導數(shù)的定義二、高階導數(shù)的求導法則三、小結(jié)思考題第三節(jié)高階導數(shù)一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(
2024-08-30 12:37
【總結(jié)】一、隱函數(shù)的導數(shù)三、小結(jié)思考題二、由參數(shù)方程所確定的函數(shù)的導數(shù)第四節(jié)隱函數(shù)及由參數(shù)方程所確定的函數(shù)的導數(shù)一、隱函數(shù)的導數(shù)定義:.)(0),(稱為隱函數(shù)所確定的函數(shù)由方程xyyyxF??.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯
2024-08-31 01:20