freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

民謠大數(shù)據(jù),大數(shù)據(jù)里的民謠的雜文隨筆-資料下載頁

2024-10-17 23:46本頁面
  

【正文】 iew、Yonghong ZSuite等數(shù)據(jù)集市相比,hadoop是開源的,項(xiàng)目的軟件成本因此會大大降低。hadoop大數(shù)據(jù)處理的意義Hadoop得以在大數(shù)據(jù)處理應(yīng)用中廣泛應(yīng)用得益于其自身在數(shù)據(jù)提取、變形和加載(ETL)方面上的天然優(yōu)勢。Hadoop的分布式架構(gòu),將大數(shù)據(jù)處理引擎盡可能的靠近存儲,對例如像ETL這樣的批處理操作相對合適,因?yàn)轭愃七@樣操作的批處理結(jié)果可以直接走向存儲。Hadoop的MapReduce功能實(shí)現(xiàn)了將單個(gè)任務(wù)打碎,并將碎片任務(wù)(Map)發(fā)送到多個(gè)節(jié)點(diǎn)上,之后再以單個(gè)數(shù)據(jù)集的形式加載(Reduce)到數(shù)據(jù)倉庫里。大數(shù)據(jù)精髓,而是全體數(shù)據(jù):在大數(shù)據(jù)時(shí)代,我們可以分析更多的數(shù)據(jù),有時(shí)候甚至可以處理和某個(gè)特別現(xiàn)象相關(guān)的所有數(shù)據(jù),而不再依賴于隨機(jī)采樣(隨機(jī)采樣,以前我們通常把這看成是理所應(yīng)當(dāng)?shù)南拗?,但高性能的?shù)字技術(shù)讓我們意識到,這其實(shí)是一種人為限制),而是混雜性:研究數(shù)據(jù)如此之多,以至于我們不再熱衷于追求精確度。之前需要分析的數(shù)據(jù)很少,所以我們必須盡可能精確地量化我們的記錄,隨著規(guī)模的擴(kuò)大,對精確度的癡迷將減弱。擁有了大數(shù)據(jù),我們不再需要對一個(gè)現(xiàn)象刨根問底,只要掌握了大體的發(fā)展方向即可,適當(dāng)忽略微觀層面上的精確度,會讓我們在宏觀層面擁有更好的洞察力,而是相關(guān)關(guān)系:我們不再熱衷于找因果關(guān)系,尋找因果關(guān)系是人類長久以來的習(xí)慣,在大數(shù)據(jù)時(shí)代,我們無須再緊盯事物之間的因果關(guān)系,而應(yīng)該尋找事物之間的相關(guān)關(guān)系。相關(guān)關(guān)系也許不能準(zhǔn)確地告訴我們某件事情為何會發(fā)生,但是它會提醒我們這件事情正在發(fā)生。開源大數(shù)據(jù)生態(tài)圈:Hadoop HDFS、HadoopMapReduce, HBase、Hive 漸次誕生,早期Hadoop生態(tài)圈逐步形成。.Hypertable是另類。它存在于Hadoop生態(tài)圈之外,但也曾經(jīng)有一些用戶。NoSQL,membase、MongoDb 商用大數(shù)據(jù)生態(tài)圈:一體機(jī)數(shù)據(jù)庫/數(shù)據(jù)倉庫:IBM PureData(Netezza), OracleExadata, SAP Hana等等。數(shù)據(jù)倉庫:TeradataAsterData, EMC GreenPlum, HPVertica 等等。數(shù)據(jù)集市:QlikView、Tableau、以及國內(nèi)的Yonghong Data Mart。大數(shù)據(jù)分析Analytic Visualizations(可視化分析)不管是對數(shù)據(jù)分析專家還是普通用戶,數(shù)據(jù)可視化是數(shù)據(jù)分析工具最基本的要求。可視化可以直觀的展示數(shù)據(jù),讓數(shù)據(jù)自己說話,讓觀眾聽到結(jié)果。Data Mining Algorithms(數(shù)據(jù)挖掘算法)可視化是給人看的,數(shù)據(jù)挖掘就是給機(jī)器看的。集群、分割、孤立點(diǎn)分析還有其他的算法讓我們深入數(shù)據(jù)內(nèi)部,挖掘價(jià)值。這些算法不僅要處理大數(shù)據(jù)的量,也要處理大數(shù)據(jù)的速度。Predictive Analytic Capabilities(預(yù)測性分析能力)數(shù)據(jù)挖掘可以讓分析員更好的理解數(shù)據(jù),而預(yù)測性分析可以讓分析員根據(jù)可視化分析和數(shù)據(jù)挖掘的結(jié)果做出一些預(yù)測性的判斷。Semantic Engines(語義引擎)我們知道由于非結(jié)構(gòu)化數(shù)據(jù)的多樣性帶來了數(shù)據(jù)分析的新的挑戰(zhàn),我們需要一系列的工具去解析,提取,分析數(shù)據(jù)。語義引擎需要被設(shè)計(jì)成能夠從“文檔”中智能提取信息。Data Quality and Master Data Management(數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理)數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理是一些管理方面的最佳實(shí)踐。通過標(biāo)準(zhǔn)化的流程和工具對數(shù)據(jù)進(jìn)行處理可以保證一個(gè)預(yù)先定義好的高質(zhì)量的分析結(jié)果。假如大數(shù)據(jù)真的是下一個(gè)重要的技術(shù)革新的話,我們最好把精力關(guān)注在大數(shù)據(jù)能給我們帶來的好處,而不僅僅是挑戰(zhàn)。數(shù)據(jù)存儲,數(shù)據(jù)倉庫數(shù)據(jù)倉庫是為了便于多維分析和多角度展示數(shù)據(jù)按特定模式進(jìn)行存儲所建立起來的關(guān)系型數(shù)據(jù)庫。在商業(yè)智能系統(tǒng)的設(shè)計(jì)中,數(shù)據(jù)倉庫的構(gòu)建是關(guān)鍵,是商業(yè)智能系統(tǒng)的基礎(chǔ),承擔(dān)對業(yè)務(wù)系統(tǒng)數(shù)據(jù)整合的任務(wù),為商業(yè)智能系統(tǒng)提供數(shù)據(jù)抽取、轉(zhuǎn)換和加載(ETL),并按主題對數(shù)據(jù)進(jìn)行查詢和訪問,為聯(lián)機(jī)數(shù)據(jù)分析和數(shù)據(jù)挖掘提供數(shù)據(jù)平臺。
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1