freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

生物工程專業(yè)畢業(yè)設(shè)計英文翻譯-資料下載頁

2024-12-01 21:25本頁面

【導(dǎo)讀】SunhoonKwon,Ik-KeunYoo,WooGiLee,HoNamChang,YongKeunChang. productivity,gL?1h?productivityof57gL?1h?1h?1

  

【正文】 和幀過濾單元, 一個 Pellicon 2 BIOMAX 100V的( 100 k NMWC , ,超純水,貝德福德,馬)與隔膜泵, 和一個 P 07090 40 (科爾 Parmer )的細(xì)胞再生裝置,其 CA流速為 600毫升/分鐘。 MCRB在接種前需要用含 50 % ( V / V )乙醇的無菌水徹底清洗。在操作過程中,需不斷向發(fā)酵罐中加入新的培養(yǎng)基同時排出產(chǎn)物。為了防止細(xì)胞密度去超過一定限度,造成過濾功能下降,需要從發(fā)酵罐中不斷抽出少量的發(fā)酵液 。在這兩個階段發(fā)酵過程中,從第一階段流出的發(fā)酵液用于第二階段中。 數(shù)值分析方法 發(fā)酵動力學(xué)的參數(shù)可以用最小二乘回歸來估算。利用 Matlab ( MathWorks 公司,公司,美國) 軟件進行數(shù)值積分找到穩(wěn)態(tài)值和約束多變量優(yōu)化以尋找到最佳操作變量。限制利用的優(yōu)化是最大的細(xì)胞密度( Xm)和最大其余血糖濃度( s) 。 討 論 為了提高生物反應(yīng)器產(chǎn)乳酸的性能,我們對連續(xù)乳酸發(fā)酵系統(tǒng)加上膜細(xì)胞分離技術(shù)( MCRB )進行了研究。大大增加在固定體積發(fā)酵罐中的細(xì)胞密度,生產(chǎn)率比傳統(tǒng)的間歇和連續(xù)發(fā)酵提高了 10 倍以上。然而,乳酸實際生產(chǎn)中,最主要因素經(jīng)濟上的可行性 ,此方法乳酸濃度高于 95 g / L時,細(xì)胞的生長幾乎完全受到抑制。在初步單 MCRB實驗中 ,即使在細(xì)胞密度保持在高于 90 g / L時,得到的乳酸濃度仍然很低,約 51政 / L,(圖 4 )。當(dāng)加入一個體積比 MCRB大 9的 CSTR時,在放出細(xì)胞液之前如果讓它在在 MCRB反應(yīng)器中停留更長的時間, 則乳酸濃度會明顯提升,會達到 87 g / L圖 6 ) 。由此我們可以得出這樣的結(jié)論:在第二個反應(yīng)器 CSTR與另一 MCRB 相連并且兩個階段的生物反應(yīng)器與細(xì)胞循環(huán)同在這兩個階段前提下,可以高速生產(chǎn)高濃度的乳酸,如果使用兩 個MCRBs 系列,則可以以 57 g L?1 h?1 的生產(chǎn)速率生產(chǎn)出濃度達到 92 g / L的乳酸(圖 12 ) 。 最后,通過優(yōu)化多步驟 MCRBs 反應(yīng)器,可以得到預(yù)期想得到的最優(yōu)生產(chǎn)乳酸的方法,實驗證明,利用兩階段 MCRBs 反應(yīng)器可以高速生產(chǎn)高濃度的乳酸,從而使固定容積反應(yīng)器的生產(chǎn)效率大大提高( A型) 。 參考文獻 [1] Aeschlimann A, Stasi LD, von Stockar U. 1990. Continuous production of lactic acid from whey permeate by Lactobacillus helveticus in two chemostats in series. Enzyme Microb Technol 12:926–932. [2] Amrane A, Prigent Y. 1999. Analysis of growth and production coupling for batch cultures of Lactobacillus helveticus with the help of an unstructured model. Proc Biochem 34:1–10. [3] Berry AR, Franco CMM, Zhang W, Middelberg APJ. 1999. Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnol Lett 21:163–167. [4] Bibal B, Kapp C, Goma G, Pareilleux A. 1989. Continuous culture of Streptococcus cremoris on lactose using various medium conditions. Appl Microbiol Biotechnol 32:155–159. [5] Bibal B, Vayssier Y, Goma G, Pareilleux A. 1991. High concentration cultivation of Lactococcus cremoris in a cellrecycle reactor. Biotechnol Bioeng 37:746–754. [6] Bo168。rgardts P, Krischke W, Tro168。sch W, Brunner H. 1998. Integrated bioprocess for the simultaneous production of lactic acid and dairy sewage treatment. Bioprocess Eng 19:321–329. [7] BrunoBa180。rcena JM, Ragout AL, Cordoba PR, Sin?eriz F. 1999. Continuous production of L(+)lactic acid by Lactobacillus casei in twostage systems. Appl Microbiol Biotechnol 51:316–324. [8] Cheryan M. 1998. Ultrafiltration and microfiltration handbook. Lancaster, PA: Technomic Publishing Company. 467 p. [9] de Gooijer CD, Bakker WAM, Beeftink HH, Tramper J. 1996. Bioreactors in series: An overview of design procedures and practical applications. Enzyme Microb Technol 18:202–219. [10] Dutta SK, Mukherjee A, Chakraborty P. 1996. Effect of product inhibition on lactic acid fermentation: Simulation and modelling. Appl Microbiol Biotechnol 46:410–413. [11] Gonc184。alves LMD, Xavier AMRB, Almeida JS, Carrondo MJT. 1991. Conitant substrate and product inhibition kiics in lactic acid production. Enzyme Microb Technol 13:314–319. [12] Keller AK, Gerhardt P. 1975. Continuous lactic acid fermentation of whey to produce a ruminant feed supplement high in crude protein. Biotechnol Bioeng 17:997–1018. [13] Kulozik U, Hammelehle B, Pfeifer J, Kessler HG. 1992. High reaction rate continuous bioconversion process in a tubular reactor with narrow residence time distributions for the production of lactic acid. J Biotechnol 22:107–116. [14] Kulozik U, Wilde J. 1999. Rapid lactic acid production at high cell concentrations in whey ultrafiltrate by Lactobacillus helveticus. Enzyme Microb Technol 24:297–302. [15] Kwon S, Lee PC, Lee EG, Chang YK, Chang HN. 2021. Production of lactic acid by Lactobacillus rhamnosus with vitaminsupplemented soybean hydrolysate. Enzyme Microb Technol 26:209–215. [16] Levenspiel O. 1980. The Monod equation: A revisit and a generalization to product inhibition situations. Biotechnol Bioeng 22:1671–1687. Levenspiel O. 1984. Chemical reaction engineering. New York: John Wiley amp。 Sons. p 124–157. [17] Litchfield JH. 1996. Microbiological production of lactic acid. In: Neidleman SL, Laskin AI, editors. Advances in applied microbiology. Vol 42. San Diego: Academic Press. 69 p. [18] Luedeking R, Piret EL. 1959a. A kiic study of the lactic acid fermentation. Batch process at controlled pH. J Biochem Microbiol Technol Eng 1:393–412. [19] Luedeking R, Piret EL. 1959b. Transient and steady states in continuous fermentation. Theory and Experiment. J Biochem Microbiol Technol Eng 1:431–459. [20] Major NC, Bull AT. 1985. Lactic acid productivity of a continuous culture of Lactobacillus delbrueckii. Biotechnol Lett 7:401–405. [21] Mehaia MA, Cheryan M. 1986. Lactic acid from acid whey permeate in a membrane recycle bioreactor. Enzyme Microb Technol 8:289–292. [22]Mehaia MA, Cheryan M. 1987. Production of lactic acid from sweet whey permeate concentrates. Process Biochem 22:185–188
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1