【導(dǎo)讀】,仰角與俯角有何區(qū)別?在Rt△BPC中,∠B=34°出各段山坡的高度h1,h2,…,hn,然后我們再“積零為整”,把。交BD的延長線于點F,垂足為F,∠AFD=90°由題意圖示可知∠DAF=30°在Rt△CDE中,∠CED=90°得到數(shù)學(xué)問題的答案;
【總結(jié)】(第二課時)福州民族中學(xué)陳毓新在Rt△ABC中,∠C=90°,根據(jù)下列條件解直角三角形;(1)a=30,b=20;(2)∠B=72°,c=14.ABCb=20a=30c(2)兩銳角之間的關(guān)系∠A+∠B=90°(3)邊角之間的關(guān)系
2025-09-21 10:39
【總結(jié)】修路、挖河、開渠和筑壩時,設(shè)計圖紙上都要注明斜坡的傾斜程度.坡面的鉛垂高度(h)和水平長度(l)的比叫做坡面坡度(或坡比).記作i,即i=.坡度通常寫成1∶m的形式,如i=1∶水平面的夾角叫做坡角,記作a,有i==tana.顯
2024-12-01 00:43
【總結(jié)】(1)已知平頂屋面的寬度L和坡頂?shù)脑O(shè)計高度h(或設(shè)計傾角a)(如圖)。你能求出斜面鋼條的長度和傾角a(或高度h)嗎?hLa例題:如圖,一棵大樹在一次強烈的地震中于離地面10米處折斷倒下,樹頂落在離樹根24米處.大樹在折斷之前高多少?解利用勾股定理可以求出折斷倒下部分的
2024-12-08 10:11
【總結(jié)】解直角三角形的應(yīng)用(1)在直角三角形中,除直角外,由已知兩元素求其余未知元素的過程叫解直角三角形.(1)三邊之間的關(guān)系:a2+b2=c2(勾股定理);(2)兩銳角之間的關(guān)系:∠A+∠B=90o;(3)邊角之間的關(guān)系:ACBab
2024-11-27 23:29
【總結(jié)】解直角三角形(1)要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的角α一般要滿足50°≤α≤75°.現(xiàn)有一個長6m的梯子.問:(1)使用這個梯子最高可以安全攀上多高的平房?(精確到)這個問題歸結(jié)為:在Rt△ABC中,已知∠A=75°,斜邊AB=6,求BC的長角α
2024-12-01 00:58
【總結(jié)】§解直角三角形(1)復(fù)習(xí)30°、45°、60°角的正弦值、余弦值和正切值如下表:銳角a三角函數(shù)30°45°60°sinacosatana1222322212332
2024-11-21 04:44
【總結(jié)】在Rt△ABC中,∠C=90°,根據(jù)下列條件解直角三角形;(1)a=30,b=20;(2)∠B=72°,c=14.ABCb=20a=30c(2)兩銳角之間的關(guān)系∠A+∠B=90°(3)邊角之間的關(guān)系caAA???斜邊的對邊s
2024-11-21 06:18
【總結(jié)】解直角三角形(4)1、如圖,在Rt△ABC中:22復(fù)習(xí)ABC(1)∠A=30°,AB=4,解這個直角三角形;(2)tanA=,求∠A的大小。導(dǎo)入如圖,有三個斜坡,其坡面與水平面的夾角分別為α、β、γ,且αβγ
2024-11-22 02:59
【總結(jié)】年級九年級課題解直角三角形(2)課型新授教學(xué)媒體多媒體教學(xué)目標知識技能會把實際問題轉(zhuǎn)化為解直角三角形問題,能運用解直角三角形的方法解決問題;、俯角等概念,學(xué)會綜合運用所學(xué)知識解決實際題.過程方法經(jīng)歷解直角三角形的實際應(yīng)用,運用轉(zhuǎn)化思想,學(xué)會把實
2024-11-19 09:38
【總結(jié)】在直角三角形中,除直角外,還有哪些元素?這5個元素之間有什么關(guān)系?知道其中哪些元素,可以求出其余的元素?cbaCBA如圖,在Rt△ABC中,∠C為直角,其余5個元素之間有以下關(guān)系:(2)銳角之間的關(guān)系:∠A+∠B=90
2025-10-10 09:27
【總結(jié)】直角三角形(第1課時)直角三角形(第1課時)得分________卷后分________評價________1.直角三角形的兩銳角;直角三角形兩直角邊的平方和等于
2025-07-20 04:17
【總結(jié)】:邊長保留四個有效數(shù)字,角度精確到1′.:解直角三角形,只有下面兩種情況:(1)已知兩條邊;(2)已知一條邊和一個銳角.在直角三角形中,由已知元素求出未知元素的過程,叫做解直角三角形.如圖,在進行測量時,從下向上看,視線與水平線的夾角叫做仰角;從上往下看
2024-11-30 05:28
【總結(jié)】實際生活中,如:河道寬度、建筑物測量問題,航空、航海定位問題,均可以用銳角三角函數(shù)解決.建筑物測高例1如圖,河對岸有一小塔AB,在C處測得塔頂A的仰角為30°,沿CB所在直線向塔前進12米到達D處,測得塔頂A的仰角為45°.求塔高AB(精確到).ABCD3
2024-12-07 15:18
【總結(jié)】回顧與思考Rt△ABE中,∠C=90°,BC=a,AC=b,AB=c,則SinA=,sinB=,cosA=,cosB=,tanA=,tanB=。?你能說出它們具有的性質(zhì)嗎?BCAac
【總結(jié)】解直角三角形(2)在直角三角形中,除直角外,由已知元素,求其余未知元素的過程叫解直角三角形.(1)三邊之間的關(guān)系:a2+b2=c2(勾股定理);(2)兩銳角之間的關(guān)系:∠A+∠B=90o(3)邊角之間的關(guān)系:ACBabctanA=absinA=