【正文】
——太陽(yáng)能小屋設(shè)計(jì) solar house designWANG Jianlu College of Mathematics Science Statistics No:100444012Tutor : LI YinghuaAbstract: In this paper, photovoltaic cells on the surface of the building by laying were studied, and their design of solar house.針對(duì)問題一,光伏電池貼附放置情況,我們對(duì)輻射強(qiáng)度較高的房頂斜面及南向面著重計(jì)算。然后根據(jù)影響太陽(yáng)能光伏組件安裝容量的因素進(jìn)行規(guī)劃,得出最優(yōu)容量,進(jìn)而根據(jù)物理知識(shí)對(duì)模型求解。Aiming at the problem of a photovoltaic cell attached, placement, the radiation intensity high roof slope and the south side are calculated. Then the planning according to the factors affecting the installed capacity of solar photovoltaic ponents, the optimal capacity, then according to the physics knowledge to solve the model.針對(duì)問題二,固定安裝的光伏系統(tǒng),我們很容易分析出,傾角選擇的正確與否直接影響光伏系統(tǒng)的總體成本的大小和系統(tǒng)效率。For question two, photovoltaic system is fixed, it is easy to analyze, inclination is correct or not directly affects the efficiency of the size and cost of system of PV system.針對(duì)問題三,太陽(yáng)能小屋的設(shè)計(jì),我們發(fā)現(xiàn)使用A3光伏電池效益并沒有提高,進(jìn)而鋪設(shè)B3對(duì)模型進(jìn)行優(yōu)化,使用線性模型,符合最優(yōu)小屋形狀。For question three, the design of solar house, we found that the use of A3 photovoltaic efficiency is not improved, then the laying of B3 to optimize the model, using the linear model, the best house shape, finally obtains the optimized benefit is times before optimization.Key Words: linear programming。 frequency analysis。 normalized equivalent length。 zscore function附錄附錄一:%單晶硅電池Ai(i=1,…,6)的選取a=[215 325 239 270 245 295]。%單晶硅電池Ai的組件功率b=[1276640 1938396 1276640 1637792 1635150 1938396]。%Ai的組件面積c=[ ]。%轉(zhuǎn)換效率的負(fù)值a1=zscore(a)% 對(duì)a標(biāo)準(zhǔn)化b1=zscore(b)% 對(duì)b標(biāo)準(zhǔn)化c1=zscore(c)%對(duì)c標(biāo)準(zhǔn)化d=a1+b1+c1%標(biāo)準(zhǔn)化后的和附錄二x=::55。for i=1:length(x)m=[ ...]。%t=m39。n=1:1:365。g=.*sin(2.*pi.*(284+n)./365)。a=。c=cos((90ax(i)).*pi./180)。b(i)=sum(t.*c)。endx(find(b==max(b)))附錄三M文件一function y=f(x1)h1=x1(1)。h2=x1(2)。x=x1(3)。y=x1(4)。y=*(h1+h2)*x/2+*(h1+h2)*x/2+*y*h2+*x*y/+*y*h1。y=y。M文件二function [n,neq]=mycon(x)h1=x1(1)。h2=x1(2)。x=x1(3)。y=x1(4)。n=x*y74。neq=[]。A=[1 1 0 0。0 0 1 1 ]。b=[0。0]lb=[ 3 3]39。ub=[ 15 15]39。[x,fval]=fmincon(@f,[3 4 ],A,b,Aeq,beq,lb,ub,@mycon)Aeq=[1 1 tan(*pi) 0]附錄四plot3([0,],[0,0],[0,0],39。k:39。)hold onplot3([0,0],[0,15000],[0,0],39。k:39。)hold onplot3([0,0],[0,0],[0,2800],39。k:39。)hold onplot3([,],[0,0],[0,2800])hold onplot3([,],[0,15000],[0,0])hold onplot3([,0],[15000,15000],[0,0])hold onplot3([,],[15000,15000],[0,2800])hold onplot3([0,0],[15000,15000],[0,2800])hold onplot3([,],[0,15000],[2800,2800])hold onplot3([,0],[0,0],[2800,5400])hold onplot3([,0],[0,0],[2800,2800],39。k:39。)hold onplot3([,0],[15000,15000],[2800,5400])hold onplot3([,0],[15000,15000],[2800,2800],39。k:39。)hold onplot3([0,0],[0,15000],[2800,2800],39。k:39。)hold onplot3([0,0],[0,0],[2800,5400],39。k:39。)hold onplot3([0,0],[0,15000],[5400,5400])hold onplot3([0,0],[15000,15000],[2800,5400])25