【正文】
:0) Org: 他們通過(guò)各種渠道引進(jìn)技術(shù)、優(yōu)良品種, result: 他們通過(guò)各種渠道引進(jìn)技術(shù)、優(yōu)良品種, (對(duì) :18,錯(cuò) :0) Org: 建立了一批以熱帶、亞熱帶作物為主的商品生產(chǎn)基地。 result: 建立了一批以熱帶、亞熱帶作物為主的商品生產(chǎn)基地。 (對(duì) :24,錯(cuò) :0) Org: 宣傳西瓜價(jià)格開(kāi)放政策和市場(chǎng)需求量, result: 宣傳西瓜價(jià)格開(kāi)放政策和市場(chǎng)需求量, (對(duì) :17,錯(cuò) :0) Org: 畝產(chǎn)由原來(lái)的四百多公斤上升到五百五十多公斤, result: 畝產(chǎn)由原來(lái)的四百多公斤上升到五百五十多公斤, (對(duì) :22,錯(cuò) :0) Some result Feature space ? Relations between feature space size and corpus size Fig. 1. Relation between the number of features and sentences. The top line describes the case of building feature spaces with an extern dictionary, and the bottom dashed line without the extern dictionary. Feature space ? Distribution of feature occurrence Fig. 2. Distribution of feature occurrence. From the top down, lines represent feature spaces built from 100, 60, 30 and 10 thousand sentences with dictionary for both of the two figures. Picture (a) illustrates the number of features which occur no more than some certain times, while picture (b) exactly some certain times. (a) (b) Feature space ? Distribution of feature weights Fig. 3. Distribution of feature weight. The model is trained on 40,000 sentences. Result ? Relation between testing accuracy and removing boundary Fig. 4. Relation between testing accuracy and removing boundary. The original model is trained on 40,000 sentences. The straight line indicates removing features that has a weight value less than boundary, while the dashed line greater than boundary. D E T A I L S A BO U T M O D E L S T ra i n i n g C o r p u s S e n t Ch a r Rg F n T i m e T rA T eA 0 . 5 K 8 , 0 1 8 1 8 0 0 , 8 5 0 0 0 . 0 3 . 3 7 1 . 0 0 0 0 0 . 6 7 2 5 1K 1 6 , 3 4 3 2 5 0 8 , 3 7 5 0 0 . 0 8 . 5 9 0 . 9 4 7 7 0. 7102 2K 3 1 , 6 8 6 3 5 4 3 , 8 3 2 0 0 . 2 2 . 2 7 0 . 9 1 1 3 0 . 7 3 8 4 5K 7 7 , 5 1 5 4 6 7 9 , 0 7 6 0 1 . 1 9 . 3 7 0 . 8 9 0 6 0 . 7 7 6 8 10K 1 5 0 , 8 7 4 5 1 , 2 9 7 , 4 4 9 0 3 . 2 3 . 0 1 0 . 9 1 4 2 0 . 8 1 5 2 20K 2 9 6 , 6 8 4 8 1 , 4 5 8 , 6 5 0 1 2 . 3 4 . 5 0 0 . 9 0 2 3 0 . 8 3 3 4 40K 5 9 7 , 7 9 2 5 3 , 7 7 3 , 6 6 7 5 0 . 3 6 . 5 3 0 . 9 5 4 5 0 . 8 7 9 2 Fig. 5. Training and Testing result with different corpuses. Result Thank you for your attention !