【正文】
73型泵,其流量Q為70m3/h,揚(yáng)程H為7m,電機(jī)功率3kW,配用兩臺(tái)電機(jī)(一臺(tái)備用),型號(hào)為Y112M4,N=4KW,滿足要求[14]。(2)經(jīng)重力濃縮池的污泥屬于高粘度污泥,高粘度污泥用泵的特點(diǎn)是要求提吸能力高,污泥不能流入泵內(nèi),一般選用單螺桿泵。經(jīng)濃縮池后污泥的流量為 Q=, 所以選用兩臺(tái)單螺桿泵(一臺(tái)備用),其型號(hào)為EH600,流量Q=,轉(zhuǎn)速244r/min,配用兩臺(tái)電機(jī)(一臺(tái)備用), 型號(hào)為YCJ71, N=,滿足要求。采用多孔管鼓風(fēng)曝氣供氧:調(diào)節(jié)池需氣量:Qt= 125m3/h;氣浮池所需氣量:Qs=SBR池所需氣量 : 式中: EA——空氣擴(kuò)散器的氧轉(zhuǎn)移率,設(shè)計(jì)中取12%總的供氣量:Q= Qt+ Qs+Gs= 125 + += 3池合用2臺(tái)鼓風(fēng)機(jī)。此外,另設(shè)備用鼓風(fēng)機(jī)1臺(tái)。1臺(tái)的空氣曝氣量為: G=Q/2=93h1=機(jī)型選?。翰捎眯吞?hào)為RF245的標(biāo)準(zhǔn)型羅茨鼓風(fēng)機(jī),其進(jìn)口流Qs=83m3min1,軸功率為183KW,所配電機(jī)功率為200 KW[14]。此設(shè)計(jì)選用帶式壓榨過(guò)濾機(jī),其優(yōu)點(diǎn)是脫水效率高,處理能力大,連續(xù)過(guò)濾,性能穩(wěn)定,操作簡(jiǎn)單,體積小,重量輕,節(jié)約能源,占地面積小。根據(jù)計(jì)算,選擇DYQ1000A型帶式壓榨過(guò)濾機(jī),其電動(dòng)機(jī)型號(hào)JZTY314,,控制器型號(hào)JDIA40,處理能力50~500kg/,泥餅含水率65~75%[14]。6 結(jié)論此次設(shè)計(jì)采用“UASB+SBR”工藝去除有機(jī)物,將UASB 和SBR 兩種處理單元進(jìn)行組合,所形成的處理工藝突出了各自處理單元的優(yōu)點(diǎn),使處理流程簡(jiǎn)潔,節(jié)省了運(yùn)行費(fèi)用,而把UASB 作為整個(gè)廢水達(dá)標(biāo)排放的一個(gè)預(yù)處理單元,在降低廢水濃度的同時(shí),可回收所產(chǎn)沼氣作為能源利用。同時(shí),由于大幅度減少了進(jìn)入好氧處理階段的有機(jī)物量,因此降低了好氧處理階段的曝氣能耗和剩余污泥產(chǎn)量,從而使整個(gè)廢水處理過(guò)程的費(fèi)用大幅度減少。采用該工藝既降低處理成本,又能產(chǎn)生經(jīng)濟(jì)效益。并且UASB 池正常運(yùn)行后,每天產(chǎn)生大量的沼氣,將其回收作為熱風(fēng)爐的燃料,可供飼料烘干使用。UASB 去除COD 達(dá)7500 kg/d,UASB 產(chǎn)氣量為3500m3/d(甲烷含量為55%~65%)。沼氣的熱值約為22 680kJ/m3,煤的熱值為21 000 kJ/t 計(jì)算,則1m3 沼氣的熱值相當(dāng)于1 kg 原煤,這樣可節(jié)煤約4 t/d 左右, 萬(wàn)元。所以本設(shè)計(jì)采用“UASB+SBR”的方法,使啤酒廢水的處理出水水質(zhì)達(dá)到在廢水處理后滿足污水排放Ⅰ級(jí)要求,設(shè)計(jì)出水水質(zhì):, ,PH為6~9。謝辭本次設(shè)計(jì)是在高秀媛老師的悉心指導(dǎo)下完成的,她在設(shè)計(jì)過(guò)程中給了我很大的幫助,幫助我解決了許多實(shí)際問(wèn)題,在此首先對(duì)高老師致以誠(chéng)摯的謝意。在還沒有開始做設(shè)計(jì)時(shí),高老師就親自帶領(lǐng)我們?nèi)D書館借文獻(xiàn)資料,在做設(shè)計(jì)的過(guò)程中我們遇到了許多難題,高老師也都一一給予解釋并耐心指導(dǎo),使我能夠順利的完成本次設(shè)計(jì)。設(shè)計(jì)結(jié)束后,高老師又在百忙之中為我們修改畢業(yè)設(shè)計(jì),幫我們找出設(shè)計(jì)中的缺點(diǎn)和不足,精益求精。高老師淵博的知識(shí)、嚴(yán)謹(jǐn)?shù)目蒲袘B(tài)度、敏銳的學(xué)術(shù)思想、豁達(dá)的人格魅力深深地影響著我,讓我在枯燥的學(xué)習(xí)期間感受到來(lái)自于指導(dǎo)老師的關(guān)懷。在將來(lái)的人生及事業(yè)道路上我會(huì)永遠(yuǎn)銘記高老師的教誨,有幸受教于高老師使我一生受益。在此特向高老師表示衷心的感謝和崇高的敬意!可以說(shuō)本次設(shè)計(jì)是老師和我們共同完成的,老師經(jīng)驗(yàn)豐富,給我們很多指導(dǎo),使我們?cè)谠O(shè)計(jì)過(guò)程中少走了許多彎路。設(shè)計(jì)的過(guò)程就是一個(gè)知識(shí)不斷積累、綜合運(yùn)用的過(guò)程。高老師的講解更加激勵(lì)我們要不斷的學(xué)習(xí)。在設(shè)計(jì)中,我們不僅學(xué)到了很多課本中學(xué)習(xí)不到的知識(shí),而且提高了自己的動(dòng)手能力,得到了巨大的收獲。今后,我將繼續(xù)努力,爭(zhēng)取把在這次設(shè)計(jì)中學(xué)到的知識(shí)運(yùn)用到工作和學(xué)習(xí)當(dāng)中,努力發(fā)揚(yáng)吃苦耐勞的精神,爭(zhēng)取獲得更大進(jìn)步。由于時(shí)間倉(cāng)促自己水平也有限,設(shè)計(jì)中難免會(huì)存在很多不足之處,懇請(qǐng)各位老師批評(píng)指正。 最后,對(duì)各位老師的耐心指導(dǎo)再次表示感謝!并祝各位老師在今后的工作里工作愉快!闔家歡樂(lè)!參考文獻(xiàn) [1]《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》(GB38382002)[2]《污水綜合排放標(biāo)準(zhǔn)》(GB89781996)[3] 北京水環(huán)境技術(shù)與設(shè)備研究中心、北京市環(huán)境保護(hù)科學(xué)研究院、(廢水卷).北京:化學(xué)工業(yè)出版社,2000,[4] 汪大翚、徐新華、趙偉榮 北京:化學(xué)工業(yè)出版社,2010[5] (下冊(cè)).北京:中國(guó)建筑工業(yè)出版社,2000[6] 趙慶良,:中國(guó)建筑工業(yè)出版社,2006[7] 高廷耀。高等教育出版社,1999[8] 韓洪軍。中國(guó)建筑工業(yè)出版社,2006[9] :中國(guó)建筑工業(yè)出版社,2002[10] :中國(guó)建筑工業(yè)出版社,2002[11] :中國(guó)建筑工業(yè)出版社,2002[12] 蔣白懿,:化學(xué)工業(yè)出版社,2005[13] 嚴(yán)道岸,:化學(xué)工業(yè)出版社,2002[14] :中國(guó)建筑工業(yè)出版社,2000[15] :中國(guó)建筑工業(yè)出版社[16] Hulshoff PolLW. UASB and brewery effluent. Water Sci.amp。,26(9):291304附錄附表1 構(gòu)筑物序號(hào)工程名稱數(shù)量(個(gè))主要參數(shù)1格柵12事故池115m10m2調(diào)節(jié)池13氣浮池14UASB池39m9m6m5SBR池410m6清水池15m6m7污泥濃縮池2φ=8污泥脫水機(jī)房19鼓風(fēng)機(jī)房1附表2 主要設(shè)備設(shè)備名稱型號(hào)詳細(xì)規(guī)格數(shù)量(臺(tái))備注1污水泵(污水)100QW7073Q=70m3/h,H=7m,N=3KW2一用一備2電動(dòng)機(jī)Y112M4N=4KW2一用一備3空壓機(jī),轉(zhuǎn)速850r/min2一用一備4表面曝氣機(jī)PE193清水充氧量48~130kg/h,電動(dòng)機(jī)功率55kw2一用一備5潷水器XB500出水能力500m3/h,2L=5m,H=2m1_5羅茨風(fēng)機(jī)RF245Qs=83m3min1,La=183KW,Po= 200 KW。3兩用一備6電動(dòng)機(jī)Y6308N=400KW2一用一備7單螺桿泵EH375Q=n=288r/min2一用一備8電動(dòng)機(jī)YJC71N=2一用一備9帶式壓濾機(jī)DYQ1000A濾網(wǎng)有效寬1000mm濾速4m/min2一用 一備10電動(dòng)機(jī)JZTY314N=2一用 一備外文文獻(xiàn)Electricity generation and brewery wastewater treatment from sequential anodecathode microbial fuel cellAbstractA sequential anodecathode doublechamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment toinvestigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was h, a relatively high chemical oxygen demand (COD) removal efficiency of %–% was achieved under longterm stable operation. The MFC displayed an open circuit voltage of V and a maximum power density of 830 mW/m3 at an external resistance of 300 Ω. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anodecathode MFC constructed with biocathode in this experiment could provide a new approach for brewery wastewater treatment. ?1 INTRODUCTIONThe brewery industry discharges large volumes of highly polluting effluents throughout the year (Braeken et al., 2004。 Parawira et al., 2005). Traditional treatments, such as aerobic sequencing batch reactor and upflow anaerobic sludge blanket reactor, require a high energy input and are thus costly. New approaches for wastewater treatment which not only reduce cost but also produce useful sideproducts have recently received increasing attention. The microbial fuel cell (MFC) technology offers a valuable alternative to energy generation as well as wastewater treatment.MFC is a device to treat wastewater and produce electricity at the same time (Bennetto, 1984。 Habermann and Pommer, 1991). A variety of readily degradable pounds such as glucose and acetate, and various types of wastewater such as domestic, starching and paper recycling plant wastewater, have operated successfully as substrate in MFC (Melhuish et al., 2006。 Freguia et al., 2007。 Kargi and Eker, 2007。 Liu and Li, 2007。 Min and Angelidaki, 2008。 VenkataMohan et al., 2008). Most could achieve a considerable chemical oxygen demand (COD) removal efficiency acpanied with electricity generation. Among these studies, landfill leachate was treated using MFC at a hydraulic retention time (HRT) of h, and biological oxygen demand (BOD) decreased from 630 to 269 mg/L with a low power density of mW/m2 (Greenman et al., 2009). A parable result of 80% in COD removal efficiency was obtained by Liu et al. (2004) using domestic wastewater, acpanied with a maximum electrical power of 26 mW/m2.Currently, abiotic cathodes are the most monly used c