【總結】第2課時平行四邊形的判定(二)一組對邊的四邊形是平行四邊形.(1)定義:連接三角形兩邊的線段叫做三角形的中位線.(2)定理:三角形的中位線于第三邊,并且第三邊的一半.平行且相等中點平行等于探究點一:利用一組對邊平
2025-06-16 12:20
【總結】第十八章平行四邊形平行四邊形平行四邊形的性質(zhì)第1課時,會初步運用這些性質(zhì)進行有關的證明和計算.,會用定義識別平行四邊形..觀察圖形,說出下列圖形邊的位置有什么特征?兩組對邊都不平行一組對邊平行,一組對邊不平行兩組對邊分別平行四邊形平行四邊形有兩組
2025-06-18 05:44
【總結】第十八章平行四邊形學練考數(shù)學八年級下冊R平行四邊形平行四邊形的判定第1課時平行四邊形的判定
2025-06-17 22:00
【總結】平行四邊形的判定第1課時BCAD:如圖(1)∵四邊形ABCD是平行四邊形∴()(定義)(2)∵()∴四邊形ABCD是平行四邊形()AB∥CD,
2025-06-17 03:56
【總結】第十八章平行四邊形平行四邊形平行四邊形的性質(zhì)第1課時【基礎梳理】一、平行四邊形的定義及表示方法:兩組對邊分別平行的四邊形.:平行四邊形用“__”表示,如平行四邊形ABCD記作“______”.??ABCD二、平行四邊形的性質(zhì)對邊_____,對角_____.三、兩平
2025-06-21 03:26
【總結】平行四邊形的性質(zhì)第2課時:()的四邊形叫做平行四邊形。(1)平行四邊形的對邊().(2)平行四邊形的對角().平行相等相等DABC,□ABCD的周長是28cm,△ABC的周長是22cm,則AC的
2025-06-21 00:04
【總結】平行四邊形的性質(zhì)第十八章平行四邊形導入新課講授新課當堂練習課堂小結學練優(yōu)八年級數(shù)學下(RJ)教學課件第2課時平行四邊形的對角線的特征學習目標;(重點),滲透轉化思想,體會圖形性質(zhì)探究的一般思路.(難點)導入新課一位飽經(jīng)滄桑的老人
2025-06-16 12:28
【總結】平行四邊形判定第十八章平行四邊形導入新課講授新課當堂練習課堂小結學練優(yōu)八年級數(shù)學下(RJ)教學課件第1課時平行四邊形的判定(1)學習目標,體會類比思想及探究圖形判定的一般思路;(重點),能根據(jù)不同條件靈活選取適當?shù)呐卸ǘɡ磉M行推理論證.(難點)
2025-06-21 12:28
【總結】平行四邊形的判定第1課時【基礎梳理】平行四邊形的判定:(1)兩組對邊_________的四邊形是平行四邊形.(2)一組對邊___________的四邊形是平行四邊形.分別相等平行且相等:兩組對角_________的四邊形是平行四邊形.:對角線_________的四邊形是平行四邊形.分別
2025-06-12 12:44
【總結】平行四邊形的性質(zhì)第2課時【基礎梳理】平行四邊形對角線的性質(zhì)(1)如圖,平行四邊形ABCD的對角線相交于點O.∵四邊形ABCD是平行四邊形,∴AD__BC,AD∥BC,由AD∥BC,可得∠OAD=______,∠ODA=______,∴△AOD≌______,∴OA=___,OB=___.
【總結】平行四邊形的判定第2課時到上一節(jié)課為止我們學習了幾種判定平行四邊形的方法?題.方法..,并能較熟練地應用三角形中位線的性質(zhì)進行有關的證明和計算.將一根木棒從AB平移到DC,AB與DC之間有何位置關系、數(shù)量關系?ABCD四邊形ABCD是什么樣的圖形
2025-06-17 04:01
2025-06-12 01:49
【總結】平行四邊形的判定第2課時【基礎梳理】三角形的中位線:連接三角形兩邊_____的線段叫三角形的中位線.中點三角形的中位線_____于三角形的第三邊,并且等于_____________.平行第三邊的一半【自我診斷】(1)一個三角形只有一條中位線.()×
2025-06-18 12:57
【總結】EE
2025-06-14 14:14