【總結(jié)】考點(diǎn)一全等三角形的判定(5年5考)例1(2022·濟(jì)寧中考)在△ABC中,點(diǎn)E,F(xiàn)分別是邊AB,AC的中點(diǎn),點(diǎn)D在BC邊上,連接DE,DF,EF,請你添加一個(gè)條件,使△BED與△FDE全等.【分析】根據(jù)三角形中位線定理得到EF∥BC,根據(jù)平行四邊形的判定定理、全等三角形的
2025-06-12 13:23
【總結(jié)】考點(diǎn)一比例線段及其性質(zhì)(5年0考)例1(2022·嘉興中考)如圖,直線l1∥l2∥l3,直線AC交l1,l2,l3于點(diǎn)A,B,C;直線DF交l1,l2,l3于點(diǎn)D,E,F(xiàn),已知,則=.【分析】根據(jù)題意求出,根據(jù)平行
2025-06-15 16:38
2025-06-15 16:36
【總結(jié)】考點(diǎn)一等腰三角形的性質(zhì)與判定(5年3考)例1(2022·濱州中考)如圖,在△ABC中,AB=AC,D為BC上一點(diǎn),且DA=DC,BD=BA,則∠B的大小為()A.40°B.36°C.30°D.25°【分析】根據(jù)等腰三角形的
【總結(jié)】第四章三角形第18講等腰三角形、等邊三角形、直角三角形01課后作業(yè)02能力提升目錄導(dǎo)航課后作業(yè)1.(2022桂林)如圖,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,則圖中等腰三角形的個(gè)數(shù)是.
2025-06-12 02:21
【總結(jié)】第六節(jié)解直角三角形及其應(yīng)用考點(diǎn)一銳角三角函數(shù)(5年3考)例1(2022·德州中考)如圖,在4×4的正方形方格圖形中,小正方形的頂點(diǎn)稱為格點(diǎn),△ABC的頂點(diǎn)都在格點(diǎn)上,則∠BAC的正弦值是.【分析】先根據(jù)勾股定理的逆定理判斷出△ABC的形狀,再由銳角三角函數(shù)的定義即可得出結(jié)論.【
2025-06-12 13:27
2025-06-12 13:25
【總結(jié)】第四章三角形第四節(jié)等腰三角形與直角三角形考點(diǎn)一等腰三角形的判定及性質(zhì)例1(2022·邵陽)如圖所示,在等腰△ABC中,AB=AC,∠A=36°,將△ABC中的∠A沿DE向下翻折,使點(diǎn)A落在點(diǎn)C處.若AE=,則BC的長是.【分析】由折疊可得到AE=
2025-06-21 06:01
【總結(jié)】銳角三角形直角三角形鈍角三角形——有一個(gè)角是鈍角。三角形按角的分類——三個(gè)角都是銳角?!幸粋€(gè)角是直角。你能舉出生活中用到直角三角形的例子嗎?直角三角形用Rt△表示,如圖記作Rt△ABC,ACB直角邊斜邊直角邊∠C=Rt∠直角三角形
2025-08-01 14:23
【總結(jié)】作業(yè)布置評(píng)價(jià)小結(jié)鞏固練習(xí)講授新課復(fù)習(xí)判定兩個(gè)三角形全等要具備什么條件?
2024-11-09 03:54
2025-08-16 01:10
【總結(jié)】第15講等腰三角形與直角三角形考點(diǎn)等腰三角形的性質(zhì)及判定6年1考相等等邊對等角三線合一一條邊等角對等邊角性質(zhì)等腰三角形的兩腰①(定義賦予)等腰三角形的兩個(gè)底角相等,即“②”等腰三角形頂角的平分線、底邊上的中線、底
2025-06-12 02:17
【總結(jié)】第四章三角形第20講解直角三角形01課后作業(yè)02能力提升目錄導(dǎo)航課后作業(yè)1.(2022德州)如圖,在4×4的正方形方格圖形中,小正方形的頂點(diǎn)稱為格點(diǎn),△ABC的頂點(diǎn)都在格點(diǎn)上,則∠BAC的正弦值是.55
2025-06-12 14:36
【總結(jié)】第15講等腰三角形與直角三角形考點(diǎn)等腰三角形的性質(zhì)及判定6年1考相等等邊對等角三線合一一條邊等角對等邊角性質(zhì)等腰三角形的兩腰①(定義賦予)等腰三角形的兩個(gè)底角相等,即“②”等腰三角形頂角的平分線、底邊上
2025-06-17 04:56