【總結】寶應縣實驗初中辛乃青星期天,小華去圖書超市購書,因他所買書類在二樓,故他乘電梯上樓,已知電梯AB段的長度8m,傾斜角為30°,則二樓的高度(相對于底樓)是______m4ABC830°??小華同學去坡度為1︰2的土坡上種樹,要求株距(
2025-05-02 03:16
【總結】解直角三角形及其應用探究:測量底部不可到達物體的高度教學目標1.認知與技能:(1)用測角儀和皮尺等工具,并結合所學的解斜三角形中相關知識解決一些實際問題;(2)一步把數(shù)和形結合起來,提高學生分析問題和解決問題的能力.2.過程與方法:(1)設計實地測量方案,在設計過程中會靈活地運用三角函數(shù)關系,進行正確的邊角互化;(2)學會將千變萬化的實際問題轉化為數(shù)學
2025-06-07 22:12
【總結】第四章三角形相似三角形考點1比例線段陜西考點解讀中考說明:、線段的比、成比例的線段。:兩條直線被一組平行線所截,所得的對應線段成比例。(1)(2)(3)(0,0);acadbcbdbd?????2(0,0);abbacbcbc?????(0)ac
2025-06-12 12:00
【總結】第四章三角形全等三角形考點1全等三角形的概念及性質陜西考點解讀中考說明:理解全等三角形的概念,能識別全等三角形中的對應邊,對應角。:能夠完全重合的兩個三角形叫作全等三角形。(1)全等三角形的對應邊①相等,全等三角形的對應角②相等。(2)全等三角形的對應線段(如對應角的平分線,對應邊上的中線、高)
2025-06-20 14:03
【總結】銳角三角形直角三角形鈍角三角形——有一個角是鈍角。三角形按角的分類——三個角都是銳角?!幸粋€角是直角。你能舉出生活中用到直角三角形的例子嗎?直角三角形用Rt△表示,如圖記作Rt△ABC,ACB直角邊斜邊直角邊∠C=Rt∠直角三角形
2025-08-01 14:23
【總結】作業(yè)布置評價小結鞏固練習講授新課復習判定兩個三角形全等要具備什么條件?
2024-11-09 03:54
【總結】三邊之間的關系a2+b2=c2(勾股定理);銳角之間的關系∠A+∠B=90o邊角之間的關系(銳角三角函數(shù))tanA=absinA=ac1、cosA=bcACBabc解直角三角形的依據(jù)2、30°,45°,60
2024-11-18 21:41
【總結】à300450600sinacosatana1cota12223332223213333211、2、在直角三角形中,由已知元素求未知元素的過程叫:解直角三角形(1)三邊之間的關系:a2+b2=c2(勾股定理);解直角三
2024-11-24 13:26
【總結】解直角三角形(1)要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的角α一般要滿足50°≤α≤75°.現(xiàn)有一個長6m的梯子.問:(1)使用這個梯子最高可以安全攀上多高的平房?(精確到)這個問題歸結為:在Rt△ABC中,已知∠A=75°,斜邊AB=6,求BC的長角α
2024-11-24 17:04
【總結】4解直角三角形第1課時解直角三角形第一章直角三角形的邊角關系提示:點擊進入習題答案顯示67892CCD10B1234見習題見習題見習題D5B11121314見習題見習題見習題見習題1.在直角三角形中,除直角外,共有______個元素,即
2024-12-28 05:55
【總結】(3)如圖,在進行測量時,從下向上看,視線與水平線的夾角叫做仰角;從上往下看,視線與水平線的夾角叫做俯角.練習1如圖,為了測量電線桿的高度AB,在離電線桿C處,用高儀CD測得電線桿頂端B的仰角a=22°,
2024-11-10 13:07
【總結】解直角三角形(4)1、如圖,在Rt△ABC中:22復習ABC(1)∠A=30°,AB=4,解這個直角三角形;(2)tanA=,求∠A的大小。導入如圖,有三個斜坡,其坡面與水平面的夾角分別為α、β、γ,且αβγ
2024-11-22 02:59
【總結】UNITFOUR第四單元三角形第26課時解直角三角形及其應用|考點自查|課前考點過關考點一解直角三角形在直角三角形中,除直角外,共有5個元素,即3條邊和2個銳角.由這些元素中的一些已知元素,求出所有未知元素的過程叫做解直角三角形.【疑難典析】在Rt△ABC中,∠
2025-06-15 00:15
【總結】臨朐縣沂山風景區(qū)大關初級中學中考復習之—銳角三角函數(shù)及其應用臨朐縣沂山風景區(qū)大關初級中學單元知識網絡直角三角形的邊角關系解直角三角形知一邊一銳角解直角三角形知兩邊解直角三角形
2025-06-21 08:57
【總結】《中考新導向初中總復習(數(shù)學)》配套課件第四章三角形第19課勾股定理與解直角三角形的簡單應用1.直角三角形的性質:如圖,在△ABC中,∠ACB=90°,則(1)兩個銳角的關系:∠A+∠B=_____°.(2)三邊的數(shù)量關系(勾股定理):________________.(
2025-06-20 20:36