freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

轉(zhuǎn)爐流程生產(chǎn)管線鋼鋼中硫含量的控制-資料下載頁(yè)

2025-04-19 00:42本頁(yè)面
  

【正文】    -- ???()式中:L 為電弧長(zhǎng)度,mm;U 為電壓,V;J 為電流,A 。適當(dāng)增加渣量,可以增加渣中 CaO 含量,稀釋渣中 CaS 濃度,可以加快脫硫速率,但渣量過(guò)大會(huì)使?fàn)t渣過(guò)厚,影響鋼渣界面反應(yīng),渣量及渣中 CaO 對(duì)終點(diǎn)平衡硫含量的影響如圖 及 所示。30 / 56圖 渣量對(duì)終點(diǎn)平衡硫含量的影響圖 熔渣中 Ca0 的含量與脫 S 率的關(guān)系(2)爐渣堿度對(duì)脫硫效果影響實(shí)測(cè)爐渣的堿度影響爐渣的熔化溫度、粘度和脫硫能力。該渣系爐渣堿度R=(CaO+MgO)/(Al 2O3+SiO2)。渣系的粘度與(CaO+MgO) 含量的關(guān)系如圖 所示,由圖可見(jiàn):當(dāng)(MgO+CaO)含量超過(guò) 70%時(shí),渣中會(huì)有固相質(zhì)點(diǎn)析出,使熔渣出現(xiàn)非均相,爐渣粘度急劇升高,流動(dòng)性變差,脫硫效率降低。(3)鋼水溫度對(duì)脫硫效果影響生產(chǎn)實(shí)踐表明,鋼水溫度低于 1560oC 時(shí),脫硫速率明顯降低;鋼水溫度高于 1560oC 時(shí),渣料熔化快。因此,要求轉(zhuǎn)爐鋼水進(jìn)站溫度要大于 1560oC,渣料熔化速度快,流動(dòng)性好,脫硫速度快。(4)爐渣氧化性對(duì)脫硫效果影響由脫硫熱力學(xué)條件可知 LF 精煉爐在白渣下脫硫和合金微調(diào),因此爐渣脫氧是造白渣操作的關(guān)鍵,本鋼煉鋼廠采用鋁系脫氧劑進(jìn)行脫氧。爐渣中氧含量31 / 56與硫分配比關(guān)系如圖 ,由圖 可知,渣中氧含量越低脫硫效果越好。圖 LF 精煉終渣堿度對(duì)成品鋼中硫質(zhì)量分教的影響圖 LF 精煉終渣氧化性對(duì)成品鋼硫質(zhì)量分?jǐn)?shù)的影響(5)LF 處理時(shí)間對(duì)脫硫率的影響LF 開(kāi)始精煉時(shí),堿度低,渣中 FeO 含量高,渣成份未調(diào)整合適,渣流動(dòng)性不好,脫硫率較慢,隨著時(shí)間的增加,脫硫率增加,LF 精煉后期硫趨于飽和。脫硫速度減慢。但是冶煉時(shí)間過(guò)長(zhǎng),容易造成鋼液吸氣,對(duì)鋼水質(zhì)量有一定的影響,同時(shí)造成原材料消耗增加。一般 LF 冶煉時(shí)間隨轉(zhuǎn)爐與薄板連鑄機(jī)之間的匹配決定,而不是以增加冶煉時(shí)間來(lái)達(dá)到降低硫含量的目的。(6)吹氬攪拌對(duì)脫硫效果影響在精煉過(guò)程中,鋼水始終處于吹氬攪拌狀態(tài),這有利于增大鋼一渣界面,促進(jìn)鋼一渣界面的化學(xué)反應(yīng),有利于脫氧、脫硫反應(yīng)的順利進(jìn)行。吹氬攪拌可使非金屬夾雜物相互碰撞、聚集,逐漸變大顆粒,便于上浮去除。吹氬還可以加速鋼中成分和溫度的均勻,便于精確控制鋼水成分、溫度,對(duì)提高鋼水質(zhì)量、32 / 56脫硫具有重要作用。隨著氬氣流量的增大,脫硫速率增大;同時(shí)容易造成鋼液面裸露,鋼水二次氧化。導(dǎo)致鋼水中氧和氧化物夾雜增加.從而限制了攪拌強(qiáng)度的進(jìn)一步增大。當(dāng)攪拌能量太小時(shí),則起不到吹氬攪拌去除夾雜物的作用。實(shí)際生產(chǎn)中的氬氣流量應(yīng)根據(jù)氬氣管道壓力、透氣磚情況、電弧情況進(jìn)行適當(dāng)調(diào)節(jié)。 LF 深脫硫操作要點(diǎn)(1)要控制好鋼液溫度,溫度不足時(shí),要先升溫操作。(2)造渣前先鋼液脫氧,根據(jù)鋼水氧化性,在處理前期向鋼中加鋁脫氧,控制溶解鋁的質(zhì)量分?jǐn)?shù)%。(3)快速升溫化渣,石灰等造渣材料要及時(shí)分批加入,控制好渣的流動(dòng)性(4)化渣后小批量連續(xù)加入脫氧劑,直至爐渣顏色轉(zhuǎn)為(黃)白色形成還原渣,并持續(xù)保持。(5)造渣過(guò)程小氣量鋼包底吹氬氣,還原渣形成后較大氣量底吹,要使鋼、渣充分?jǐn)嚢杞佑|。(6)在還原渣形成后進(jìn)行進(jìn)一步合金微調(diào),然后小氣量較長(zhǎng)時(shí)間(10 min 以上)鋼包底吹氬。33 / 56結(jié) 論(1)在本鋼現(xiàn)有冶煉條件下,經(jīng)過(guò)鎂基噴粉預(yù)處理脫硫后,鐵水中的硫的平均值可達(dá) 16106,為超低硫管線鋼的冶煉提供了前提條件并大大減少了后續(xù)工序的脫硫任務(wù),有效降低了生產(chǎn)高級(jí)別管線鋼的成本。(2)鐵水用 CaO 和 Mg 脫硫時(shí),起主要脫硫作用的是 Mg,產(chǎn)物 MgS 在高爐渣中是穩(wěn)定的,但在鐵水預(yù)脫硫過(guò)程中容易被空氣中的氧氧化產(chǎn)生回硫,CaO的加入對(duì)于穩(wěn)定脫硫產(chǎn)物防止回硫有利。(3)提高鐵水預(yù)處理效率,降低處理成本最有效的方法是控制鈣鎂比及氣體攪拌強(qiáng)度,鈣鎂比以 左右為宜。(4)在管線鋼生產(chǎn)過(guò)程中,轉(zhuǎn)爐冶煉過(guò)程有增硫現(xiàn)象(不能脫硫) ,LF 脫硫效果將直接決定成品管線鋼中硫含量水平。本鋼生產(chǎn)條件下,經(jīng) LF 精煉脫硫后硫含量可低至 5106,可滿足較高級(jí)別管線鋼生產(chǎn)要求。(5)LF 脫硫時(shí),為保證還原性氣氛,創(chuàng)造良好脫硫條件,需造堿性白渣較理想的脫硫終渣成分為:(CaO) 50~55%、(Al 2O3)>25%、(SiO 2)<10%、(MgO)<10% 、(MnO+FeO) <% ,采用緩釋脫氧劑替代鋁屑脫氧可實(shí)現(xiàn)節(jié)鋁和快速成白渣的目的。(6)LF 脫硫時(shí),加強(qiáng)氣體攪拌是其高脫硫率和脫硫速率的有效方法。34 / 56致 謝本課題的研究和論文的撰寫(xiě)是在宋滿堂老師的悉心指導(dǎo)下完成的。老師嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,開(kāi)闊敏銳的思維方法,系統(tǒng)的理論知識(shí)和豐富的實(shí)踐經(jīng)驗(yàn)使我受益匪淺,令我終生難忘。特別感謝宋老師,在論文的醞釀構(gòu)思,試驗(yàn)方案設(shè)計(jì),寫(xiě)作修改以及定稿過(guò)程中都傾注了大量的心血,給予了全面細(xì)致的指導(dǎo)。感謝遼寧科技學(xué)院冶金工程系的陳韌、孫麗娜、李麗穎、等各位老師,在大學(xué)的四年學(xué)習(xí)生活中給予了我無(wú)微不至關(guān)懷和極大的幫助。感謝本鋼特殊鋼研發(fā)所的各位老師在現(xiàn)場(chǎng)試驗(yàn)過(guò)程中給我留下的深刻印象和對(duì)我未來(lái)工作帶來(lái)的深遠(yuǎn)影響!感謝我的家人和朋友對(duì)我的關(guān)心和照顧,正因?yàn)槟銈兊南ば恼疹櫴刮以趯W(xué)習(xí)上無(wú)后顧之憂。最后衷心地感謝在百忙之中評(píng)閱論文和參加答辯的各位專家、教授!35 / 56參考文獻(xiàn)[1] GLOVER A.XS0 design,construction and operation.The InternationalSymposium Proceedings on X80 Steel Grade Pipelines,Seijing,2022:143—198.[2] HILLENBRAND H G, GRAS M,KALWA C.高強(qiáng)度管線鋼的發(fā)展和生產(chǎn).科學(xué)與技術(shù).北京:冶金工業(yè)出版社,2022.340—356.[3] 李樹(shù)慶,潘貽芳.管線鋼的研發(fā)過(guò)程及方向[J].天津冶金.2022:123(1):1.[4] 蔣曉放,朱立新.寶鋼純凈鋼冶煉技術(shù)[J].寶鋼技術(shù),2022,(3):3942.[5] [J] .寶術(shù).2022,(3):4146.[6] RH 真空精煉脫碳和脫硫?qū)嵺`[J] .煉鋼與連鑄.1997,(1):4552.[7] .[J] .,16(1):1115.[8] 李樹(shù)慶,潘貽芳.管線鋼的研發(fā)過(guò)程及方向[J] .:123(1):1.[9] [D]. 沈陽(yáng):東北大學(xué),2022.[10] 王祖濱,東濤 .低合金高強(qiáng)度鋼[M].北京::93.[11] 張顯程,鞏建鳴,涂善東,等.高強(qiáng)鋼硫化物應(yīng)力腐蝕開(kāi)裂及防范[J] .煉油技術(shù)與工程.2022,33(10):2528.[12] 趙平.H 2S 腐蝕的影響因素[J],全面腐蝕控制, 2022,16(3):89.[13] 于賦志. 侯純明等.鋼水深脫硫的方法[J].材料與冶金學(xué)報(bào).2022,1(2) .[14] 鄭磊,傅俊巖 .高等級(jí)管線鋼的發(fā)展現(xiàn)狀[J] .,41(10):2.[15] D. Takahashi,M.Kamo, Y.Kurose and H. Nomura.Deep steel desulphurisation technology in ladle furnace at KSC. Ironmaking amp。 Steelmaking, Volume 30, Number 2, April 2022 , pp.116119(4) .36 / 56附錄外文原文Deep steel desulphurisation technology in ladle furnace at KSCD. Takahashi,M. Kamo, Y. Kurose and H. NomuraAt the MizushimaWorks of Kawasaki Steel Corporation, a new deep desulphurisation protechnology to produce ultralow sulphur steels has been developed to replace the conventional process that prised ladle furnace treatment followed by flux injection. In the new process, the use of a double plug gas injection systemin the ladle furnace to promote desulphurisation, and optimisation of the ladle slag position by thermodynamic calculations to maximise sulphide capacity, have enabled the flux injection stage to be omitted and shortened the desulphurisation time. As a result of thesemodifications, 35min after treatment start the sulphur content can be reduced to ppm. On average, the time from tapping at converter until teeming start at caster has been reduced by enabling production schedules to be synchronised and the maximum number of sequential casting heats to be increased from 3 to 10. There have also been economic benefits: the total steelmaking cost of ultralow sulphur steel has been reduced by %.INTRODUCTIONThe demand for mass production of ultralow sulphur steels with S content less than 10 ppm (for example, line pipe steels with resistance to hydrogen induced cracking and high tension steels), has increased continuously over the years in order to achieve better properties. In response to the demand, deep desulphurisation technology is playing a more important role than ever in the entire steelmaking the Mizushima Works of Kawasaki Steel Corporation,Japan, conventional deep desulphurisation prised a bination of ladle furnace (LF) and flux injection flux injection process was indispensable after LF treatment to lower stably the S content to less than 10 this prolonged the process time, it was diYcult to synchronise the converter and secondary re. ning schedule with the casting schedule, resulting in low productivity due to a small number of sequential casting heats. To raise productivity, KSC has developed a new deep desulphurisation technology by improving the LF process, which has made it possible to omit the flux injection treatment. Details of the technology are discussed below.37 / 56STEELMAKING PROCESS OF ULTRALOW SULPHUR STEELFigure 1 shows the outline of the steelmaking process for ultralow sulphur steels in the Mizushima Works. Hot metal tapped from the blast furnaces is dephosphorised and desulphurised in the hot metal pretreatment process. The pretreated At the MizushimaW
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1