freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

整式的乘除-教案原文-資料下載頁

2025-04-17 01:48本頁面
  

【正文】 ④分解因式,必須進(jìn)行到每一個(gè)多項(xiàng)式都不能再分解為止.【例題選講】例計(jì)算下列各式: (1) (-2)2(-2)3 ;(2) a2a4a3 ;(3) x5x(-x)3 ;(4) (a+b-c)2(c-a-b)3(5) 10010n+110n-1 ;(6) (x+2)n-1(2+x)n+1-(x+2)2n 解:(1) (-2)2(-2)3=(-2)2+3=(-2)5=-32 ;(2) a2a4a3=a6a3=a9(3) x5x(-x)3=-x5xx3=-x5+1+3=-x9 ;(4) (a+b-c)2(c-a-b)3=(a+b-c)2[-(a+b-c)]3=-(a+b-c)5(5) 10010n+110n-1=10210n+110n-1=102n+2(6) (x+2)n-1(2+x)n+1-(x+2)2n=(x+2)2n-(x+2)2n=0 解題方法:熟記公式是解這類題的前提,當(dāng)題中冪的底數(shù)不同時(shí),必須利用乘法和乘方的意義變形,化成同底數(shù)冪;當(dāng)題目中有加、減、乘混合運(yùn)算時(shí),應(yīng)計(jì)算同底數(shù)冪的乘法,然后再合并同類項(xiàng). 例計(jì)算下列各式:(1) [(-2)2]6 ;(2) [(x+y)3]4 ;(3) (a4n)n-1 ;(4) -(y4)2(y2)3 ;(5) (-a3)2+(-a2)3-(-a2)(-a)4 ;(6) x3x2x4+(-x4)2+4(-x2)4解:(1) [(-2)2]6=(-2)2 6=(-2)12=212 ;(2) [(x+y)3]4=(x+y)34=(x+y)12(3) (a4n)n-1=a4n(n-1)= ; (4) -(y4)2(y2)3=-y8y6=-y14(5) (-a3)2+(-a2)3-(-a2)(-a)4=a6-a6+a2a4=a6-a6+a6=a6(6) x3x2x4+(-x4)2+4(-x2)4=x9+x8+4x8=x9+5x8例計(jì)算下列各式: (1) (-3a4)3 ;(2) (a2b3)m ;(3) [(x+y)(x-y)]5 ;(4) (x m+2y 2n-1)2 ;(5) (-)8225 ;(6) (1990)n()n+1 ;解:(1) (-3a4)3=(-3)3(a4)3=-27a12 ;(2) (a2b3)m=(a2)m(b3)m=a2mb3m ;(3) [(x+y)(x-y)]5=(x+y)5(x-y)5;(4) (xm+2y2n-1)2=(xm+2)2(y2n-1)2=x2m+4y4n-2(5) (-)8225=()8225=225=2242=(2)242=2(6) (1990)n()n+1=(1990)n()n()=(1990)n =1=例已知22x+1+4x=48,求x的值. 解:∵22x+1+4x=222x+22x=322x且22x+1+4x=48∴322x=48,∴22x=16,∴22x=2 4,∴2x=4,∴x=2.解題方法:解這種有關(guān)指數(shù)方程的基本方法是,將左右兩邊變形為兩個(gè)冪相等的等式,且左右兩邊冪的底數(shù)相同,再根據(jù)兩個(gè)底數(shù)相同的冪相等,其指數(shù)必定相等列出方程,解這個(gè)方程即可.例計(jì)算:(1) 3x2y(-2xy3) (2) (-5a2b3)(-4b2c)a2b (3) [2(a-b)3][-3(a-b)2][-(a-b)] (4) (-3xy)2(-x2y)3(-yz2)2(5) (-4xy3)(-xy)3-(x2y3)2 (6) (2xyz2)2(-xy2z)-(-xyz)3(5yz)(-3z) 解:(1) 3x2y(-2xy3)=-6x3y4(2) (-5a2b3)(-4b2c)a2b=10a4b6c(3) [2(a-b)3][-3(a-b)2][-(a-b)]=4(a-b)6(4) (-3xy)2(-x2y)3(-yz2)2=9x2y2(-x6y3)y2z4=-x8y7z4(5) (-4xy3)(-xy)3-(x2y3)2=-4xy3(-x3y3)-x4y6=x4y6-x4y6=x4y6(6) (2xyz2)2(-xy2z)-(-xyz)3(5yz)(-3z)=4x2y2z4(-xy2z)-(-x3y3z3)(5yz)(-3z)=-4x3y4z5-15x3y4z5=-19x3y4z5例計(jì)算: (1) (-2a2)(3ab2-5ab3) (2) (-2x2y)2(-y2+xy+x3)(3) xn-1(2xn-4xn+1+5xn+3) (4) 2a(-ab-b2)-3ab(4a-2b)(5) x3-2x[x-3(x-1)] 解:(1) (-2a2)(3ab2-5ab3)=-6a3b2+10a3b3(2) (-2x2y)2(-y2+x y+x3)=4x4y2(-y2+x y+x3)=-x4y4+6x5y3+x7y2(3) x n-1(2xn-4xn+1+5xn+3)=2x2n-1-4x2n+5x2n+2(4) 2a(-a b-b2)-3ab(4a-2b)=-2a2b-2ab2-12a2b+6ab2=-14a2b+4ab2(5) x3-2x[x-3(x-1)]=x3-2x[x-x+3] =x3-x2+2x2-6x =x3+x2-6x例已知x+y=4,x-y=6,求代數(shù)式x y(y2+y)-y2(x y+2x)-3x y的值解:由 解得 x=5,y=-1原式=x y3+xy2-x y3-2xy2-3x y =-x y2-3x y當(dāng)x=5,y=-1時(shí)原式=-5(-1)2-35(-1)=10例計(jì)算:(1) (3x2-2x-5)(-2x+3)(2) (2x-y)(4x2+2xy+y2) (3) (3a+2b)2(4) (x-1)(2x-3)(3x+1) 解:(1) (3x2-2x-5)(-2x+3)=-6x3+9x2+4x2-6x+10x-15=-6x3+13x2+4x-15(2) (2x-y)(4x2+2xy+y2)=8x3+4x2y+2xy2-4x2y-2xy2-y3=8x3-y3(3) (3a+2b)2=(3a+2b)(3a+2b)=9a2+6ab+6ab+4b2(4) (x-1)(2x-3)(3x+1)=[(x-1)(2x-3)](3x+1) =(2x2-3x-2x+3)(3x+1)=(2x2-5x+3)(3x+1)=6x3+2x2-15x2-5x+9x+3=6x3-13x2+4x+3例已知(a2+pa+8)與(a2-3a+q)的乘積中不含a3和a2項(xiàng),求p、q的值.分析:不含有這個(gè)項(xiàng),即為此項(xiàng)的系數(shù)為零,又(a2+pa+8)與(a2-3a+q)的乘積中的a3項(xiàng)是-3a3+pa3=(-3+p)a3, a2項(xiàng)是qa2-3pa2+8a2=(q-3 p+8)a2由題意得: 得: 例下列計(jì)算是否正確?為什么(1) (5x+2y)(5x-2y)=(5x)2-(2y)2=25x2-4y2(2) (-1+3a)(-1-3a)=(-1)2+(3a)2=1+9a2(3) (-2x-3y)(3y-2x)=(3y)2-(2x)2=9y2-4x2解:第(1)題,符合兩數(shù)和乘以它們的差公式的特征,且兩數(shù)分別是5x與2y,可直接運(yùn)用公式計(jì)算,運(yùn)算結(jié)果正確.第(2)題也符合兩數(shù)和乘以它們的差公式的特征,可用公式計(jì)算,但右邊的結(jié)果應(yīng)是平方差,故(2)錯(cuò)第(3)題(-2x-3y)(3y-2x)=-(2x+3y)(3y-2x)=-(9y2-4x2),所以(3)錯(cuò).例1計(jì)算:(1) (3+x)(3-x)(2) (x2-y3)(x2+y3)(3) (a3b5+c3d4)(c3d4-a3b5)(4) (-a-3ab)(-3ab+a)(5) (1-2x)(1+2x)(1+4x2)(1+16x4)(6) 98102(7) (x+y)2(x-y)2-(x-y)(x+y)(x2+y2)(8) (3+9a)(a-)-3(a-2)(3a+6)(9) x(x2+2x)(x-2)解:(1) (3+x)(3-x)=32-x2=9-x2(2) (x2-y3)(x2+y3)=(x2)2-(y3)2=x4-y6(3) (a3b5+c3d4)(c3d4-a3b5)=(c3d4)2-(a3b5)2=c6d8-a6b10(4) (-a-3ab)(-3ab+a)=(-3ab)2-a2=9a2b2-a2(5) (1-2x)(1+2x)(1+4x2)(1+16x4)=[12-(2x)2](1+4x2)(1+16x4)=(1-4x2)(1+4x2)(1+16x4)=[1-(4x2)2](1+16x4)=(1-16x4)(1+16x4)=1-256x8(6) 98102=(100-2)(100+2)=1002-22=9996(7) (x+y)2(x-y)2-(x-y)(x+y)(x2+y2)=[(x+y)(x-y)]2-(x2-y2)(x2+y2)=(x2-y2)2- (x4-y4)=(x2-y2)( x2-y2)-(x4-y4)=x4-x2y2-x2y2+y4-x4+y4=2y4-2x2y2(8) (3+9a)(a-)-3(a-2)(3a+6)=3 (1+3a)(a-)-(3a-6)(3a+6)=(3a+1)(3a-1)-(3a-6)(3a+6)=9a2-1-9a2+36=35例1計(jì)算:(1) (--)2(2) ()2(3) (am-bn)2(4) 982(5) (1-y)2-(1+y)(-1-y)(6) (x-2y)(x+2y)-(x+2y)2(7) (m+2)2(m-2)2(8) (a+b-c)(a-b+c)(9) (2x+3y-z)2解:(1) (--)2=++(2) ()2=(3) (am-bn)2=a2m-2ambn+b2n(4) 982=(100-2)2=1002-400+4=9604(5) (1-y)2-(1+y)(-1-y)=1-2y+y2+(1+y)2=1-2y+y2+1+2y+y2=2+2y2(6) (x-2y)(x+2y)-(x+2y)2=x2-4y2-x2-4xy-4y2=-4xy-8y2(7) (m+2)2(m-2)2=[(m+2)(m-2)]2=(m2-4)2=m4-8m2+16(8) (a+b-c)(a-b+c)=[a+(b-c)][a-(b-c)]=a2-(b-c)2=a2-b2+2bc-c2(9) (2x+3y-z)2=[(2x+3y)-z]2=(2x+3y)2-2 z (2x+3y)+z2=4x2+12xy+9y2-4xz-6yz+z2例1已知 a+b=2,a b=1 求a2+b(a-b)2的值解:由完全平方公式(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab=22-21=2(a-b)2=a2+b2-2ab=2-21=0例1先化簡(jiǎn),再求值,其中a=5思路點(diǎn)撥:對(duì)于這個(gè)混合運(yùn)算,先算乘方,再算除,后算加減,有括號(hào)的先算括號(hào)里的原式====把a(bǔ)=5代入得,原式=25+25=0例1對(duì)下列多項(xiàng)式進(jìn)行因式分解:(1)4x3y+4x2y2+xy3;(2)3x3-12xy2解:⑴原式==⑵原式==3x(x+2y)(x-2y)例1分解因式:⑴ ⑵⑴原式==〔2q-2q2+1〕⑵原式==注意:⑴中與是一對(duì)相反數(shù),首先要將其底變換成相同,再提取公因式法分解因式;⑵中項(xiàng)的指數(shù)是含字母m多項(xiàng)式,在提取公因式法時(shí)剩余的的指數(shù)是相減得到的差.例1把下列各式分解因式: ⑴ ⑵ ⑶⑷ ⑸ 解:⑴原式== ⑵原式== ⑶原式= ⑷原式== = ⑸原式===例1分解下列因式:⑴ ⑵ ⑶⑷ 解:⑴原式===⑵原式===⑶原式===⑷原式== =例1把下列各式分解因式:⑴ ⑵ ⑶ ⑷解:⑴原式= ⑵原式== ⑶原式= = = ⑷原式===例已知:a,b,c 分別為△: 證明:∵== 又∵a,b,c 分別為△ABC的三條邊長(zhǎng)∴例2 已知:n為正整數(shù),求證:能被30整除. 證明:==15 ∵n為正整數(shù), =30,∴能被30整除.例2分解下列因式:⑴ ⑵(3) (4)解: ⑴ ∵42=(-6)(-7),(-6)+(-7)=-13, 原式= ⑵ ∵3=(-1)(-3),(-1)+(-3)=-4 原式=(a+b-1)(a+b-4)(3)原式==(4)原式==復(fù)習(xí)題A組1. 計(jì)算:(1) aa。(2) (xy)(xy)。(3) [(x)]。(4) [(x)]。(5) (2mn)。(6) (y3)(y2).2. 計(jì)算:(1) (410)(210)。(2) 2a3a。(3) (3xy)(4yz)。(4) (2a)(5a)。(5) (3x)(2xx1)。(6) (x+2)(x+6)。(7) (x2)(x6)。(8) (2x1)(3x+2).3. 計(jì)算:(1) (x+2)(x2)。(2) (m+n)(m
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1