【總結(jié)】武漢科技大學(xué)1張凱副教授武漢科技大學(xué)計(jì)算機(jī)學(xué)院人工神經(jīng)網(wǎng)絡(luò)(ArtificalNeuralNetwork)2第一章神經(jīng)網(wǎng)絡(luò)概述1.人工智能與神經(jīng)網(wǎng)絡(luò)2.人工神經(jīng)網(wǎng)絡(luò)的基本概念3.人工神經(jīng)網(wǎng)絡(luò)研究的歷史4.人工神經(jīng)網(wǎng)絡(luò)的應(yīng)用領(lǐng)域人工智能?人工智能(Ar
2025-05-26 02:15
【總結(jié)】1 第3講人工神經(jīng)網(wǎng)絡(luò) 歐陽柳波 第一頁,共八十七頁。 2/65 人工神經(jīng)網(wǎng)絡(luò)的進(jìn)展 ?初創(chuàng)階段〔二十世紀(jì)四十年代至六十年代〕: ?1943年,美國(guó)心理學(xué)家W.S.Mccullo...
2025-09-24 10:43
【總結(jié)】INSTITUTEOFCOMPUTINGTECHNOLOGY2022/2/21神經(jīng)信息學(xué)脈沖耦合神經(jīng)網(wǎng)絡(luò)史忠植中科院計(jì)算所INSTITUTEOFCOMPUTINGTECHNOLOGY2022/2/22脈沖耦合神經(jīng)網(wǎng)絡(luò)隨著生物神
2025-01-08 06:15
【總結(jié)】機(jī)器學(xué)習(xí)人工神經(jīng)網(wǎng)絡(luò)(ANN)概述?人工神經(jīng)網(wǎng)絡(luò)提供了一種普遍且實(shí)用的方法從樣例中學(xué)習(xí)值為實(shí)數(shù)、離散值或向量的函數(shù)?反向傳播算法,使用梯度下降來調(diào)節(jié)網(wǎng)絡(luò)參數(shù)以最佳擬合由輸入-輸出對(duì)組成的訓(xùn)練集合?人工神經(jīng)網(wǎng)絡(luò)對(duì)于訓(xùn)練數(shù)據(jù)中的錯(cuò)誤健壯性很好?人工神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用到很多領(lǐng)域,例如視覺場(chǎng)景分析,語音識(shí)別,機(jī)器人控制簡(jiǎn)
2025-10-09 23:31
【總結(jié)】人工神經(jīng)網(wǎng)絡(luò) ArtificialNeural Networks 第一頁,共七十九頁。 概述 什么是人工神經(jīng)網(wǎng)絡(luò) 人工神經(jīng)網(wǎng)絡(luò):是一種應(yīng)用類似于大腦神 經(jīng)突觸聯(lián)接的結(jié)構(gòu)進(jìn)行信息處理的...
2025-09-24 10:50
【總結(jié)】ArtificialIntelligencePrinciplesandApplications第8章人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用教材:王萬良《人工智能及其應(yīng)用》(第2版)高等教育出版社,2022.62第8章人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用神經(jīng)網(wǎng)絡(luò)(neuralworks,NN)
2025-01-05 23:19
【總結(jié)】31一個(gè)說明性實(shí)例32蘋果/香蕉分類器分類器傳感器神經(jīng)網(wǎng)絡(luò)33標(biāo)準(zhǔn)向量模式pshapetextureweight=p2111–=標(biāo)準(zhǔn)香蕉模式標(biāo)準(zhǔn)蘋果模式形狀:{1:圓形;-1:非圓形}質(zhì)地
2025-05-26 18:04
【總結(jié)】神經(jīng)網(wǎng)絡(luò)?生物神經(jīng)元?人工神經(jīng)元模型?人工神經(jīng)網(wǎng)絡(luò)模型神經(jīng)生理學(xué)和神經(jīng)解剖學(xué)的研究結(jié)果表明,神經(jīng)元(Neuron)是腦組織的基本單元,是人腦信息處理系統(tǒng)的最小單元。?生物神經(jīng)元?生物神經(jīng)網(wǎng)絡(luò)1、人工神經(jīng)網(wǎng)絡(luò)的生物學(xué)基礎(chǔ)生物神經(jīng)元在結(jié)構(gòu)上由:細(xì)胞體(Cellbody)、
2025-01-04 14:41
【總結(jié)】第五章神經(jīng)網(wǎng)絡(luò)分類器感知器算法神經(jīng)網(wǎng)絡(luò)分類器感知器算法一、引言模式識(shí)別與人工智能是研究如何利用計(jì)算機(jī)實(shí)現(xiàn)人腦的一些功能。人工神經(jīng)網(wǎng)絡(luò)研究的發(fā)展:?1943年,提出形式神經(jīng)元的數(shù)學(xué)模型,人工神經(jīng)網(wǎng)絡(luò)研究的開端。?1949年,提出神經(jīng)元的學(xué)習(xí)準(zhǔn)則,為神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)算法奠定了基礎(chǔ)。?50年代,研究類似
2025-05-26 18:03
【總結(jié)】第7章計(jì)算智能–人工神經(jīng)網(wǎng)絡(luò)1第7章計(jì)算智能?人工神經(jīng)網(wǎng)絡(luò)?遺傳算法?螞蟻算法?專家系統(tǒng)第7章計(jì)算智能–人工神經(jīng)網(wǎng)絡(luò)2人工神經(jīng)網(wǎng)絡(luò)(ANN)人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetwroks),就是基于模仿生物大腦的結(jié)構(gòu)和功能,經(jīng)過一
2025-01-05 05:05
【總結(jié)】第2章神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)本章將闡述,作為“智能”物質(zhì)基礎(chǔ)的大腦是如何構(gòu)成和如何工作的?在構(gòu)造新型智能信息處理系統(tǒng)時(shí),可以從中得到什么啟示?§人工神經(jīng)網(wǎng)絡(luò)的生物學(xué)基礎(chǔ)§人工神經(jīng)元模型§人工神經(jīng)網(wǎng)絡(luò)模型§神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)本章小結(jié)人工神經(jīng)網(wǎng)絡(luò)的生物學(xué)
2025-01-05 02:40
【總結(jié)】2022/2/2馬盡文1第2章前饋型人工神經(jīng)網(wǎng)絡(luò)?M-P模型?感知機(jī)模型與學(xué)習(xí)算法?多層感知機(jī)網(wǎng)絡(luò)?自適應(yīng)線性單元與網(wǎng)絡(luò)?非線性連續(xù)變換單元組成的前饋網(wǎng)絡(luò)?BP算法2022/2/2馬盡文2非線性連續(xù)變換單元組成的網(wǎng)絡(luò)由非線性連續(xù)變換單元組成的前饋網(wǎng)絡(luò),簡(jiǎn)稱為BP(BackPropaga
2025-01-08 04:10
【總結(jié)】第2部分:人工神經(jīng)網(wǎng)絡(luò)河北師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院主要內(nèi)容一.人工神經(jīng)網(wǎng)絡(luò)基本知識(shí)生物神經(jīng)網(wǎng)絡(luò)、生物神經(jīng)元人工神經(jīng)網(wǎng)絡(luò)、人工神經(jīng)元人工神經(jīng)網(wǎng)絡(luò)三要素典型激活函數(shù)神經(jīng)網(wǎng)絡(luò)幾種典型形式二.前饋神經(jīng)網(wǎng)絡(luò)、多層感知器、及非線性分類三.BP神經(jīng)網(wǎng)絡(luò)四
2025-01-05 05:03
【總結(jié)】by謝廣明,2022~2022學(xué)年度第一學(xué)期1ArtificialNeuralNetworksANN第六章人工神經(jīng)網(wǎng)絡(luò)(II)by謝廣明,2022~2022學(xué)年度第一學(xué)期2內(nèi)容?前向神經(jīng)網(wǎng)絡(luò)模型?前向神經(jīng)網(wǎng)絡(luò)用途?前向神經(jīng)網(wǎng)絡(luò)訓(xùn)練?BP算法b
【總結(jié)】第十三章神經(jīng)網(wǎng)絡(luò)建模與控制主講教師:付冬梅北京科技大學(xué)信息工程學(xué)院自動(dòng)化系主要內(nèi)容1、智能控制的產(chǎn)生和基本特征2、基于神經(jīng)網(wǎng)絡(luò)的系統(tǒng)辨識(shí)3、基于神經(jīng)網(wǎng)絡(luò)的系統(tǒng)辨識(shí)示例4、基于神經(jīng)網(wǎng)絡(luò)的系統(tǒng)控制5、基于神經(jīng)網(wǎng)絡(luò)的系統(tǒng)控制示例智能控制的產(chǎn)生和基本特征尋找不需要建立(精確)數(shù)學(xué)模型的
2025-10-15 13:55