freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

外文翻譯--關(guān)于農(nóng)業(yè)廢料作為潛在的螯合吸附劑從水溶液中吸附重金屬離子的研究-資料下載頁(yè)

2025-05-12 07:54本頁(yè)面

【導(dǎo)讀】除這些有毒重金屬的傳統(tǒng)處理技術(shù)是不經(jīng)濟(jì)的,且產(chǎn)生大量的有毒化學(xué)污泥。吸附技術(shù)對(duì)比傳統(tǒng)處理技術(shù)的主要優(yōu)點(diǎn)包括:成本低,效率高,減少化學(xué)。或生物污泥量,生物吸附劑的再生性好以及金屬能夠被回收利用。業(yè)廢棄物是強(qiáng)金屬吸附劑的豐富來(lái)源。農(nóng)業(yè)廢棄物中含有的官能團(tuán)如乙酰胺基、羥基、羰基、酚醛、酰胺基、氨基、巰基等。這些官能團(tuán)對(duì)重金屬具有親和力從。而形成金屬絡(luò)合物或螯合物。吸附過(guò)程的機(jī)制包括:化學(xué)吸附,絡(luò)合,表面吸附,通過(guò)間隙擴(kuò)散以及離子交換等。屬各方面的零散的相關(guān)信息。此外,可以改善這些吸附劑以提高效率和多重利用來(lái)加強(qiáng)在工業(yè)。這些重金屬由于其毒性、生物富集和持久性的性質(zhì)而備受關(guān)注。過(guò)去的一些災(zāi)害正是由于水產(chǎn)品中的重金屬污染造成的,比如日本甲?;廴驹斐傻乃畟R悲劇和鎘污染造成“痛病”在日本京東河的流行[26],[53]。然而活性炭成本昂貴以及在更新過(guò)程的損耗限制

  

【正文】 rom wastewater – a review. J. . Control 5, 12–23. [89]Rao, M., Parwate, ., Bhole, ., 2020. Removal of Cr and Ni from aqueous solution using bagasse and fly ash. Waste Manage. 22, 821–830. [90]Randall, ., Hautala, E., Waiss, Jr. ., 1974. Removal and recycling of heavy metal ions from mining and industrial waste streams with agricultutral byproducts. In: Proceedings of the Fourth Mineral Waste Utilization Symposium. , Z., Gerente, C., Andres, Y., Ralet, ., Thibault, , ., 2020. Ni (II) and Cu (II) binding properties of native and modified sugar beet pulp. Carbohydr. Polym. 49, 23–31. [91]Roberts, ., Rowland, ., 1973. Removal of mercury from aqueoussolutions by nitrogencontaining chemically modified cotton. . Technol. 7, 552–555. [92]Saeed, A., Akhter, ., Iqbal, M., 2020a. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbents. . Technol. 45, 25–31. [93]Saeed, A., Iqbal, M., Akhtar, ., 2020b. Removal and recovery of lead (II) from single and multiple, (Cd, Ni, Cu, Zn) solutions by crop milling waste (black gram husk). J. Hazard. Mater. 117, 65–73. [94]Saeed, A., Iqbal, M., 2020. Bioremoval of Cd from aqueous solution by black gram husk (Cicer arientinum). Water Res. 37, 3472–3480. [95]Sarin, V., Pant, ., 2020. Removal of chromium from industrial waste by using eucalyptus bark. Biores. Technol. 97, 15–20. [96]Sarkanen, ., Ludwig, ., 1971. LigninsOccurance, Formation, Structure and Reactions. WileyInterscience, New York, , M., Klasnja, M., 2020. Wood saw dust and wood originate materials as adsorbents for heavy metal ions. Holz Roh Werkst. 62,69–73. [97]Sciban, M., Radetic, B., Kevresan, Z., Klasnja, M., 2020. Adsorption of heavy metals from electroplating waste water by wood saw dust. Biores. Technol. 98, 402–409. [98]Sciban, M., Klasnja, M., Skrbic, B., 2020. Modified hardwood sawdust as 14 adsorbent of heavy metal ions from water. Wood Sci. Technol. 40,217–227. [99]Seki, K., Saito, N., Aoyama, M., 1997. Removal if heavy metal ions from solutions by coniferous barks. Wood Sci. Technol. 31, 441–447. [100]Shukla, ., Pai, ., 2020. Adsorption of Cu (II), Ni (II) and Zn (II) on modified jute fibres. Biores. Technol. 96, 1430–1438. [101]Shukla, ., Sakhardande, ., 1992. Column studies on metal , ., Yu, ., Dorris, K., Shukla, A., 2020. Removal of nickel from aqueous solutions by saw dust. J. Hazard. Mater. B121, 243–246. [102]Singh, ., Rastogi, R., Hasan, ., 2020. Removal of cadmium from waste water using agricultural waste using rice polish. J. Hazard. Mater. A121, 51–58. [103]Sjo168。 tro168。m, E., 1981. Wood Chemistry Fundamentals and Applications. Academic Press Inc., New , K., Balasubramanian, N., Ramakrishnan, ., 1988. Studieson chromium removal by rice husk carbon. Ind. J. Environ. Health 30,376–387. [104]Srivastava, S., Ahmed, ., Thakur, ., 2020. Removal of chromium and pentachlorophenol from tannery effluent. Biores. Technol. 98, 1128–1132. [105]Srivastva, ., Gupta, ., Mohan, D., 1996. Kiic parameters for the removal of lead and chromium from waste water using activated carbon developed fertilizer waste material. Environ. Model. Assess. 1,281–290. [106]Sudha, ., Abraham, E., 2020. Studies on chromium (VI) adsorption using immobilized fungal biomass. Biores. Technol. 87, 17–26. [107]Tarley, ., Arruda, ., 2020. Biosorption of heavy metals usingrice milling byproducts. Characterization and application for removal of metals from aqueous effluents. Chemosphere 54, 987–995. [108]TatyCostodes, ., Favdvet, H., Porte, C., Delacroix, A., 2020. Removal of cadmium and lead ions from aqueous solutions, by adsorption onto saw dust of Pinus sylvestris. J. Hazard. Mater. B105, 121–142. [109]Tee, ., Khan, ., 1988. Removal of lead, cadmium and zinc by waste tea leaves. Environ. Technol. Lett. 9, 1223–1232. [110]Tsui, ., Cheung, ., Tam, ., Wong, ., 2020. A parative study on metal sorption by brown seaweed. Chemosphere 65, 51–57. [111]Valix, M., Cheung, ., Zhang, K., 2020. Role of heteroatom in activated carbon for the removal ofhexavalent Cr from wastewater. . Mater. 135, 395–405. [112]Vaughan, T., Seo, ., Marshall, ., 2020. Removal of selected metal ions from aqueous solutions using modified corncobs. Biores. , 133–139. [113]Venkateswarlu, P., Ratnam, ., Rao, ., Rao, ., 2020. Removal of chromium from aqueous solution using Azadirachta indica (neem) leaf powder as an adsorbent. Int. J. Phys. Sci. 2, 188–195. [114]Vieira, ., Volesky, B., 2020. Biosorption: a solution to . Microbiol. 3, 17–24. [115]Volesky, B., Holan, ., 1995. Biosorption of heavy metals. Biotechnol. Progr. 11, 235–250. [116]Wafwoy, W., Seo, ., Marshall, ., 1999. Utilization of peanut shells as adsorbents for selected metals. J. Chem. Technol. , 1117–1121. 15 [117]Wilson, W., Yang, H., Seo, ., Marshall, ., 2020. Select metal adsorption by activated carbon made from peanut shells. . 97, 2266–2270. [118]Yu, B., Zhang, Y., Shukla, ., Dorris, ., 2020. The removal of heavy metal from aqueous solutions by sawdust adsorption – removal of copper. J. Hazard. Mater. B 80, 33–42. [119]Yu, B., Zhang, Y., Shukla, A., Shukla, S., Dorris, ., 2020. The removal of heavy metals from aqueous solutions by sawdust adsorption–removal of lead and parison of its adsorption with koper. . Mater. 84, 83–94. [120]Zhang, L., Zhao, L., Yu, Y., Chen, C., 1998. Removal of lead from aqueous solution by nonliving Rhizopus nigricans. Water Res. 32,1437–1444. [121]Zhou, ., Kiff, ., 1991. The uptake of copper from aqueous solution by immobilized fungal biomass. J. Chem. Technol. 52,317–330. [122]Zulkali, ., Ahmed, ., Norulakmal, ., 2020. Oriza sativa husk as heavy metal adsorbent: optimization with lead as modelsolution. Biores. Technol. 97, 21–25.
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1