freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx九年級(jí)數(shù)學(xué)平行四邊形的專(zhuān)項(xiàng)培優(yōu)-易錯(cuò)-難題練習(xí)題含詳細(xì)答案-資料下載頁(yè)

2025-04-03 00:02本頁(yè)面
  

【正文】 分析:(1)由條件可知,當(dāng)n=1(即M點(diǎn)與D點(diǎn)重合),m=2時(shí),AB=2AD,設(shè)AD=a,則AB=2a,由矩形的性質(zhì)可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出結(jié)論.(2)延長(zhǎng)PM交EA延長(zhǎng)線于G,由條件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性質(zhì)就可以得出結(jié)論.(3)如圖1,連接BM交EF于點(diǎn)Q,過(guò)點(diǎn)F作FK⊥AB于點(diǎn)K,交BM于點(diǎn)O,通過(guò)證明△ABM∽△KFE,就可以得出,即,由AB=2AD=2BC,BK=CF就可以得出的值是為定值.(1)∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90176。,∠EDF+∠NDF=90176。,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴AE=FC.∵AB=CD,∴ABAE=CDCF. ∴BE=DF. ∴BE=DE.Rt△AED中,由勾股定理,得,即,∴AE=AD.∴BE=2ADAD=.∴.(2)如圖3,延長(zhǎng)PM交EA延長(zhǎng)線于G,∴∠GAM=90176。.∵M(jìn)為AD的中點(diǎn),∴AM=DM.∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。,AB∥CD.∴∠GAM=∠PDM.在△GAM和△PDM中,∠GAM=∠PDM,AM=DM,∠AMG=∠DMP,∴△GAM≌△PDM(ASA).∴MG=MP.在△EMP和△EMG中,PM=GM,∠PME=∠GME,ME=ME,∴△EMP≌△EMG(SAS).∴EG=EP.∴AG+AE=EP.∴PD+AE=EP,即EP=AE+DP.(3),值不變,理由如下:如圖1,連接BM交EF于點(diǎn)Q,過(guò)點(diǎn)F作FK⊥AB于點(diǎn)K,交BM于點(diǎn)O,∵EM=EB,∠MEF=∠BEF,∴EF⊥MB,即∠FQO=90176。.∵四邊形FKBC是矩形,∴KF=BC,F(xiàn)C=KB.∵∠FKB=90176。,∴∠KBO+∠KOB=90176。.∵∠QOF+∠QFO=90176。,∠QOF=∠KOB,∴∠KBO=∠OFQ.∵∠A=∠EKF=90176。,∴△ABM∽△KFE.∴即.∵AB=2AD=2BC,BK=CF,∴.∴的值不變.考點(diǎn):;;;;.13.如圖1所示,(1)在正三角形ABC中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是∠ACP的平分線上一點(diǎn),若∠AMN=60176。,求證:AM=MN.(2)若將(1)中“正三角形ABC”改為“正方形ABCD”,N是∠DCP的平分線上一點(diǎn),若∠AMN=90176。,則AM=MN是否成立?若成立,請(qǐng)證明;若不成立,說(shuō)明理由.(3)若將(2)中的“正方形ABCD”改為“正n邊形A1A2…An“,其它條件不變,請(qǐng)你猜想:當(dāng)∠An﹣2MN=_____176。時(shí),結(jié)論An﹣2M=MN仍然成立.(不要求證明) 【答案】【解析】分析:(1)要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點(diǎn)E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據(jù)全等三角形的對(duì)應(yīng)邊成比例得出AM=MN.(2)同(1),要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點(diǎn)E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據(jù)全等三角形的對(duì)應(yīng)邊成比例得出AM=MN.詳(1)證明:在邊AB上截取AE=MC,連接ME.在正△ABC中,∠B=∠BCA=60176。,AB=BC.∴∠NMC=180176?!螦MN∠AMB=180176?!螧∠AMB=∠MAE,BE=ABAE=BCMC=BM,∴∠BEM=60176。,∴∠AEM=120176。.∵N是∠ACP的平分線上一點(diǎn),∴∠ACN=60176。,∴∠MCN=120176。.在△AEM與△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)解:結(jié)論成立;理由:在邊AB上截取AE=MC,連接ME.∵正方形ABCD中,∠B=∠BCD=90176。,AB=BC.∴∠NMC=180176?!螦MN∠AMB=180176?!螧∠AMB=∠MAB=∠MAE,BE=ABAE=BCMC=BM,∴∠BEM=45176。,∴∠AEM=135176。.∵N是∠DCP的平分線上一點(diǎn),∴∠NCP=45176。,∴∠MCN=135176。.在△AEM與△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)由(1)(2)可知當(dāng)∠An2MN等于n邊形的內(nèi)角時(shí),結(jié)論An2M=MN仍然成立;即∠An2MN=時(shí),結(jié)論An2M=MN仍然成立;故答案為[].點(diǎn)睛:本題綜合考查了正方形、等邊三角形的性質(zhì)及全等三角形的判定,同時(shí)考查了學(xué)生的歸納能力及分析、解決問(wèn)題的能力.難度較大.14.如圖,點(diǎn)E是正方形ABCD的邊AB上一點(diǎn),連結(jié)CE,過(guò)頂點(diǎn)C作CF⊥CE,交AD延長(zhǎng)線于F.求證:BE=DF.【答案】證明見(jiàn)解析.【解析】分析:根據(jù)正方形的性質(zhì),證出BC=CD,∠B=∠CDF,∠BCD=90176。,再由垂直的性質(zhì)得到∠BCE=∠DCF,然后根據(jù)“ASA”證明△BCE≌△BCE即可得到BE=DF詳解:證明:∵CF⊥CE,∴∠ECF=90176。,又∵∠BCG=90176。,∴∠BCE+∠ECD =∠DCF+∠ECD∴∠BCE=∠DCF,在△BCE與△DCF中,∵∠BCE=∠DCF,BC=CD,∠CDF=∠EBC,∴△BCE≌△BCE(ASA),∴BE=DF.點(diǎn)睛:本題考查的是正方形的性質(zhì),熟知正方形的性質(zhì)及全等三角形的判定與性質(zhì)是解答此題的關(guān)鍵.15.(本題滿(mǎn)分10分)如圖1,已知矩形紙片ABCD中,AB=6cm,若將該紙片沿著過(guò)點(diǎn)B的直線折疊(折痕為BM),點(diǎn)A恰好落在CD邊的中點(diǎn)P處.(1)求矩形ABCD的邊AD的長(zhǎng).(2)若P為CD邊上的一個(gè)動(dòng)點(diǎn),折疊紙片,使得A與P重合,折痕為MN,其中M在邊AD上,N在邊BC上,如圖2所示.設(shè)DP=x cm,DM=y(tǒng) cm,試求y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍.(3)①當(dāng)折痕MN的端點(diǎn)N在AB上時(shí),求當(dāng)△PCN為等腰三角形時(shí)x的值;②當(dāng)折痕MN的端點(diǎn)M在CD上時(shí),設(shè)折疊后重疊部分的面積為S,試求S與x之間的函數(shù)關(guān)系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】試題分析:(1)根據(jù)折疊圖形的性質(zhì)和勾股定理求出AD的長(zhǎng)度;(2)根據(jù)折疊圖形的性質(zhì)以及Rt△MPD的勾股定理求出函數(shù)關(guān)系式;(3)過(guò)點(diǎn)N作NQ⊥CD,根據(jù)Rt△NPQ的勾股定理進(jìn)行求解;(4)根據(jù)Rt△ADM的勾股定理求出MP與x的函數(shù)關(guān)系式,然后得出函數(shù)關(guān)系式.試題解析:(1)根據(jù)折疊可得BP=AB=6cm CP=3cm 根據(jù)Rt△PBC的勾股定理可得:AD=3.(2)由折疊可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)當(dāng)點(diǎn)N在AB上,x≥3, ∴PC≤3,而PN≥3,NC≥3.∴△PCN為等腰三角形,只可能NC=NP.過(guò)N點(diǎn)作NQ⊥CD,垂足為Q,在Rt△NPQ中,∴解得x=.(4)當(dāng)點(diǎn)M在CD上時(shí),N在AB上,可得四邊形ANPM為菱形.設(shè)MP=y(tǒng),在Rt△ADM中,即∴ y=.∴ S=考點(diǎn):函數(shù)的性質(zhì)、勾股定理.
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1