freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學培優(yōu)易錯試卷(含解析)之平行四邊形含詳細答案-資料下載頁

2025-04-02 00:46本頁面
  

【正文】 4.∵矩形ABCD的周長為32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的長為6cm.點睛:此題主要考查學生對全等三角形的判定與性質(zhì)和矩形的性質(zhì)等知識點的理解和掌握,難易程度適中,是一道很典型的題目.12.如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.(1)請判斷:FG與CE的關系是___;(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.【答案】(1)FG=CE,F(xiàn)G∥CE;(2)成立;(3)成立.【解析】試題分析:(1)只要證明四邊形CDGF是平行四邊形即可得出FG=CE,F(xiàn)G∥CE;(2)構(gòu)造輔助線后證明△HGE≌△CED,利用對應邊相等求證四邊形GHBF是矩形后,利用等量代換即可求出FG=C,F(xiàn)G∥CE;(3)證明△CBF≌△DCE后,即可證明四邊形CEGF是平行四邊形.試題解析:解:(1)FG=CE,F(xiàn)G∥CE;(2)過點G作GH⊥CB的延長線于點H.∵EG⊥DE,∴∠GEH+∠DEC=90176。.∵∠GEH+∠HGE=90176。,∴∠DEC=∠HE.在△HGE與△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四邊形GHBF是矩形,∴GF=BH,F(xiàn)G∥CH,∴FG∥CE.∵四邊形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四邊形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90176。.在△CBF與△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90176。.∵∠CDE+∠DEC=90176。,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四邊形CEGF平行四邊形,∴FG∥CE,F(xiàn)G=CE.13.在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.【答案】(1)見解析;(2).【解析】【分析】(1)根據(jù)折疊得出∠DEF=∠BEF,根據(jù)矩形的性質(zhì)得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據(jù)矩形的性質(zhì)得出EM=AB=6,AE=BM,根據(jù)折疊得出DE=BE,根據(jù)勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【詳解】(1)∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90176。.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為:.【點睛】本題考查了折疊的性質(zhì)和矩形性質(zhì)、勾股定理等知識點,能熟記折疊的性質(zhì)是解答此題的關鍵.14.如圖,在正方形ABCD中,點E在CD上,AF⊥AE交CB的延長線于F.求證:AE=AF.【答案】見解析【解析】【分析】根據(jù)同角的余角相等證得∠BAF=∠DAE,再利用正方形的性質(zhì)可得AB=AD,∠ABF=∠ADE=90176。,根據(jù)ASA判定△ABF≌△ADE,根據(jù)全等三角形的性質(zhì)即可證得AF=AE.【詳解】∵AF⊥AE,∴∠BAF+∠BAE=90176。,又∵∠DAE+∠BAE=90176。,∴∠BAF=∠DAE,∵四邊形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90176。,在△ABF和△ADE中,∴△ABF≌△ADE(ASA),∴AF=AE.【點睛】本題主要考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識點,證明△ABF≌△ADE是解決本題的關鍵.15.如圖,在平面直角坐標系xOy中,四邊形OABC的頂點A在x軸的正半軸上,OA=4,OC=2,點D、E、F、G分別為邊OA、AB、BC、CO的中點,連結(jié)DE、EF、FG、GD.(1)若點C在y軸的正半軸上,當點B的坐標為(2,4)時,判斷四邊形DEFG的形狀,并說明理由.(2)若點C在第二象限運動,且四邊形DEFG為菱形時,求點四邊形OABC對角線OB長度的取值范圍.(3)若在點C的運動過程中,四邊形DEFG始終為正方形,當點C從X軸負半軸經(jīng)過Y軸正半軸,運動至X軸正半軸時,直接寫出點B的運動路徑長.【答案】(1)正方形(2)(3)2π【解析】分析:(1)連接OB,AC,說明OB⊥AC,OB=AC,可得四邊形DEFG是正方形.(2)由四邊形DEFG是菱形,可得OB=AC,當點C在y軸上時,AC=,當點C在x軸上時,AC=6, 故可得結(jié)論;(3)根據(jù)題意計算弧長即可.詳解:(1)正方形,如圖1,證明連接OB,AC,說明OB⊥AC,OB=AC,可得四邊形DEFG是正方形.(2)如圖2,由四邊形DEFG是菱形,可得OB=AC,當點C在y軸上時,AC=,當點C在x軸上時,AC=6, ∴ ;(3)2π.如圖3,當四邊形DEFG是正方形時,OB⊥AC,且OB=AC,構(gòu)造△OBE≌△ACO,可得B點在以E(0,4)為圓心,2為半徑的圓上運動.所以當C點從x軸負半軸到正半軸運動時,B點的運動路徑為2 .圖1 圖2 圖3點睛:本題主要考查了正方形的判定,.
點擊復制文檔內(nèi)容
數(shù)學相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1